一门武功能否传承久远并被发扬光大,是要看缘分的。一般来说,师傅传授给徒弟的武功总要打个折扣,于是越往后传,弟子们的功夫就越弱…… 直到某一支的某一代突然出现一个天分特别高的弟子(或者是吃到了灵丹、挖到了特别的秘笈),会将功夫的威力一下子放大N倍 —— 我们称这种弟子为“得道者”。
这里我们来考察某一位祖师爷门下的徒子徒孙家谱:假设家谱中的每个人只有1位师傅(除了祖师爷没有师傅);每位师傅可以带很多徒弟;并且假设辈分严格有序,即祖师爷这门武功的每个第i代传人只能在第i-1代传人中拜1个师傅。我们假设已知祖师爷的功力值为Z,每向下传承一代,就会减弱r%,除非某一代弟子得道。现给出师门谱系关系,要求你算出所有得道者的功力总值。
输入格式:
输入在第一行给出3个正整数,分别是:N(<=105)——整个师门的总人数(于是每个人从0到N-1编号,祖师爷的编号为0);Z——祖师爷的功力值(不一定是整数,但起码是正数);r ——每传一代功夫所打的折扣百分比值(不超过100的正数)。接下来有N行,第i行(i=0, ..., N-1)描述编号为i的人所传的徒弟,格式为:
Ki ID[1] ID[2] ... ID[Ki]
其中Ki是徒弟的个数,后面跟的是各位徒弟的编号,数字间以空格间隔。Ki为零表示这是一位得道者,这时后面跟的一个数字表示其武功被放大的倍数。
输出格式:
在一行中输出所有得道者的功力总值,只保留其整数部分。题目保证输入和正确的输出都不超过1010。
输入样例:
10 18.0 1.00 3 2 3 5 1 9 1 4 1 7 0 7 2 6 1 1 8 0 9 0 4 0 3
输出样例:
404
dfs简单题
#include<iostream> #include<vector> #include<cmath> #include<cstdio> using namespace std; int n,k; int temp[100010] ; vector<int> persons[100010] ; int N; double Z,r; double dfs(int x,int t){ double ans = 0; if(!persons[x].size()){ ans += temp[x]*Z*pow(1-r/100.0,t); } else{ for(int j = 0; j < persons[x].size();j++){ ans+=dfs(persons[x][j],t+1); } } return ans; } int main(){ cin>>N>>Z>>r; int k; for(int i = 0; i < N;i++){ cin>>n; if(!n){ cin >> temp[i]; } for(int j = 0; j < n;j++){ cin >> k; persons[i].push_back(k); } } cout<<(int)dfs(0,0)<<endl; return 0; }