• [LeetCode 338.] 比特位计数


    LeetCode 338. 比特位计数

    一道简单题,但是把位运算和DP结合起来,很有意思。

    题目描述

    给定一个非负整数 num。对于 0 ≤ i ≤ num 范围中的每个数字 i ,计算其二进制数中的 1 的数目并将它们作为数组返回。

    示例 1:

    输入: 2
    输出: [0,1,1]

    示例 2:

    输入: 5
    输出: [0,1,1,2,1,2]

    进阶:

    • 给出时间复杂度为O(n*sizeof(integer))的解答非常容易。但你可以在线性时间O(n)内用一趟扫描做到吗?
    • 要求算法的空间复杂度为O(n)。
    • 你能进一步完善解法吗?要求在C++或任何其他语言中不使用任何内置函数(如 C++ 中的 __builtin_popcount)来执行此操作。

    解题思路

    思路一:n & (n-1)

    看到题目的第一眼,会觉得眼熟,因为这不就是计算二进制位中1的个数的题目嘛!对于每一个数,计算的时候只需要每次利用 n &= (n-1) 消去最低位的1,重复操作直到n变成0,操作的次数就是1的个数。对于n个数,每一个都如此计算,时间开销基本可以看作 O(n)。

    思路二:DP

    思路一中,我们认为时间开销是 O(n) 是因为我们把每一个数字的计数都看作了 O(1) 开销,因为每个数字的计数次数上线就是int类型是数据宽度32。
    这里题目让我们进一步优化时间复杂度,希望降低到每个数字只用一次位运算的时间,可能吗?
    只有一个数字显然不行,但是连续数组的话是可以的,用DP即可!
    对于数字n,考察其最低位,如果为0,则n中1的个数和 n/2 相同,否则需要再+1。

    参考代码

    /*
     * @lc app=leetcode.cn id=338 lang=cpp
     *
     * [338] 比特位计数
     */
    
    class Solution {
    public:
    /*
        vector<int> countBits(int n) {
            vector<int> cnt(n+1, 0);
            for (int i=0; i<=n; i++) {
                int x = i;
                while (x) {
                    cnt[i] ++;
                    x &= (x-1);
                }
            }
            return cnt;
        } // AC, O(n*sizeof(integer))
    */
        vector<int> countBits(int n) {
            vector<int> cnt(n+1, 0);
            for (int i=1; i<=n; i++) {
                cnt[i] = (i & 1) + cnt[i >> 1];
            }
            return cnt;
        } // AC, O(n), DP
    };
    // @lc code=end
    
  • 相关阅读:
    [面试题]去除字符串中相邻两个字符的重复
    [面试题]单向链表的倒序索引值?
    Android数据存储——文件读写操作(File)
    python操作Excel读写(使用xlrd和xlrt)
    在Ubuntu上安装qq2012客户端
    sharepoint 2010开发webpart(转)

    【Sharepoint 2007】WebPart开发、部署过程全记录(转)
    sharepoint2010最初的了解
    基于windows验证的moss2010站点登录域后还弹出对话框解决方法(转)
  • 原文地址:https://www.cnblogs.com/zhcpku/p/15252322.html
Copyright © 2020-2023  润新知