Leftmost Digit
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 7 Accepted Submission(s) : 2
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
Given a positive integer N, you should output the leftmost digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the leftmost digit of N^N.
Sample Input
2 3 4
Sample Output
2 2
Hint
In the first case, 3 * 3 * 3 = 27, so the leftmost digit is 2.
In the second case, 4 * 4 * 4 * 4 = 256, so the leftmost digit is 2.
In the second case, 4 * 4 * 4 * 4 = 256, so the leftmost digit is 2.
题意:
给你一个数字n。输出n的n次的第一位。
题解:
n^n=n*log10(n)。而10的整数次方数的首位为1,因此要求此题的答案仅仅需求出n*log10(n)的小数部分m。由于0<m<10,所以10^m的整数部分((int)pow(10,m))即为答案。
參考代码:
#include<stdio.h> #include<math.h> int main() { int t; scanf("%d",&t); while(t--) { double a,c,n; long long d,b; scanf("%lf",&n); a=n*log10(n); b=(long long)a;//因为题目数据量的限制。这里的b的强制转换为long long型。int型会wa。 c=a-b; d=(int)pow(10.0,c); printf("%lld ",d); } return 0; }