• Caffe学习笔记2--Ubuntu 14.04 64bit 安装Caffe(GPU版本)


    0.检查配置

    1. VMWare上运行的Ubuntu,并不能支持真实的GPU(除了特定版本的VMWare和特定的GPU,要求条件严格,所以我在VMWare上搭建好了Caffe环境后,又重新在Windows 7 64bit系统上安装了Ubuntu 14.04 64bit系统,链接在此,以此来搭建Caffe GPU版本);

    2. 确定GPU支持CUDA

    输入:

    lspci | grep -i nvidia
    

    显示结果:

    我的是GTX 650,然后到http://developer.nvidia.com/cuda-gpus去验证,支持CUDA;

    3. 确定Linux版本支持CUDA

    输入:

    uname -m && cat /etc/*release
    

    结果显示:

    4. 确定系统已经安装了GCC

    输入:

    gcc --version
    

    结果显示:

    5. 确定系统已经安装了正确的Kernel Headers和开发包

    输入:

    uname -r
    

    结果:4.2.0-36-generic,这个是必须安装的kernel headers和开发包的版本;

    安装对应的kernels header和开发包,

    sudo apt-get install linux-headers-$(uname -r)
    

    1.安装CUDA

    下载CUDA,从https://developer.nvidia.com/cuda-downloads,下载对应版本的cuda安装包,我下载的是deb(local)版,

    安装CUDA,运行如下命令,即可安装CUDA;

    sudo dpkg -i cuda-repo-ubuntu1404_7.5-18_amd64.deb
    sudo apt-get update
    sudo apt-get install cuda
    

    安装完成后,重启一下;

    2.安装cuDNN

    下载cuDNN,从https://developer.nvidia.com/rdp/cudnn-download,注册,然后下载,

    注意事项:
    有可能由于最新cuDNN不稳定,导致后续caffe工程编译失败,报出如下错误,详情参考第三个链接,这时可以回退一下,下载较新版本的cuDNN;

    CXX src/caffe/test/test_im2col_layer.cpp
    In file included from ./include/caffe/util/device_alternate.hpp:40:0,
                     from ./include/caffe/common.hpp:19,
                     from ./include/caffe/blob.hpp:8,
                     from src/caffe/test/test_im2col_layer.cpp:5:
    ./include/caffe/util/cudnn.hpp: In function ‘void caffe::cudnn::createPoolingDesc(cudnnPoolingStruct**, caffe::PoolingParameter_PoolMethod, cudnnPoolingMode_t*, int, int, int, int, int, int)’:
    ./include/caffe/util/cudnn.hpp:127:41: error: too few arguments to function ‘cudnnStatus_t cudnnSetPooling2dDescriptor(cudnnPoolingDescriptor_t, cudnnPoolingMode_t, cudnnNanPropagation_t, int, int, int, int, int, int)’
             pad_h, pad_w, stride_h, stride_w));
                                             ^
    ./include/caffe/util/cudnn.hpp:15:28: note: in definition of macro ‘CUDNN_CHECK’
         cudnnStatus_t status = condition; 
                                ^
    In file included from ./include/caffe/util/cudnn.hpp:5:0,
                     from ./include/caffe/util/device_alternate.hpp:40,
                     from ./include/caffe/common.hpp:19,
                     from ./include/caffe/blob.hpp:8,
                     from src/caffe/test/test_im2col_layer.cpp:5:
    /usr/local/cuda/include/cudnn.h:799:27: note: declared here
     cudnnStatus_t CUDNNWINAPI cudnnSetPooling2dDescriptor(
                               ^
    Makefile:572: recipe for target '.build_release/src/caffe/test/test_im2col_layer.o' failed
    make: *** [.build_release/src/caffe/test/test_im2col_layer.o] Error 1
    

    拷贝cuDNN库文件到cuda目录下,

    tar -zxvf cudnn-7.0-linux-x64-v4.0-prod.tgz
    cd cuda
    sudo cp lib64/* /usr/local/cuda/lib64/
    sudo cp include/cudnn.h /usr/local/cuda/include/
    

    设置环境变量,在/etc/profile中添加CUDA环境变量,

    sudo gedit /etc/profile
    

    在打开的文件中加入如下两句话

    export PATH=/usr/local/cuda/bin:$PATH
    export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
    

    保存后,使环境变量立即生效,

    source /etc/profile
    

    进入/usr/local/cuda/samples,执行下面的命令来build samples,

    sudo make all -j4
    

    全部编译完成后,进入 samples/bin/x86_64/linux/release,运行deviceQuery,

    ./deviceQuery
    

    如果出现显卡信息,则驱动及显卡安装成功,结果如下:

    3.编译caffe

    修改caffe/Makefile.config,

    # cuDNN acceleration switch (uncomment to build with cuDNN).
    USE_CUDNN := 1#去掉这个注释
    
    # CPU-only switch (uncomment to build without GPU support).
    # CPU_ONLY := 1#加上这个注释
    

    然后输入,

    make clean#第一次编译,不需要执行
    make all
    make test
    make runtest
    

    显示结果:

    cpu版本Caffe学习笔记1--Ubuntu 14.04 64bit caffe安装的编测试行结果是共1058项,GPU版本的测试运行结果是2005项;

    编译pycaffe,

    make pycaffe
    make distribute
    

    4.mnist数据测试

    cd caffe
    
    # 下载mnist数据
    sh data/mnist/get_mnist.sh
    
    sh examples/mnist/create_mnist.sh
    
    ./examples/mnist/train_lenet.sh
    

    执行结果,

    和CPU版本Caffe学习笔记1--Ubuntu 14.04 64bit caffe安装的mnist数据测试相比,速度明显提升;当时我运行脚本后,就开始看书,刚看完一页,抬头发现已经运行完毕,第一次用GPU计算,虽然只是很渣的GTX 650,但依然对GPU的运算能力感到佩服;

    5.深度学习开源库环境搭建大礼包

    昨晚群里一个哥们分享了一个github链接,涵盖了主流深度学习开源库的环境搭建,包括Nvidia驱动、CUDA、cuDNN、TensorFlow、Caffe、Theano、Keras、Torch,链接在此,他的配置是Ubuntu 14.04 64bit + Nvidia Titan X,还是适用于好多朋友的机器的,所以好东西还是要分享给大家;

    6.参考链接

    Ubuntu 14.04上安装caffe

    Ubuntu 14.04 + Caffe + Cuda 7.5 + Opencv 3.0安装教程

    Caffe error make test

  • 相关阅读:
    zoj 3632 Watermelon Full of Water
    将字符串切割成数组 componentsSeparatedByString
    paip.C#.NET多线程访问 toolStripStatusLabel
    EBS后台取消死锁检查代码和取消死锁会话步骤经验
    Java泛型深入题目
    Win7下BootCamp蓝屏问题解决方案二
    一步步开发 Spring MVC 应用
    批处理获取U盘、可移动硬盘的盘符
    一种松耦合的分层插件系统的设计和实现
    分享一个开源的批量修改VC工程属性的小工具
  • 原文地址:https://www.cnblogs.com/zhbzz2007/p/5499180.html
Copyright © 2020-2023  润新知