• 2014.6.14模拟赛【bzoj1646】[Usaco2007 Open]Catch That Cow 抓住那只牛


    Description

    Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 <= N <= 100,000) on a number line and the cow is at a point K (0 <= K <= 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting. * Walking: FJ can move from any point X to the points X-1 or X+1 in a single minute * Teleporting: FJ can move from any point X to the point 2*X in a single minute. If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?

        农夫约翰被通知,他的一只奶牛逃逸了!所以他决定,马上幽发,尽快把那只奶牛抓回来.
        他们都站在数轴上.约翰在N(O≤N≤100000)处,奶牛在K(O≤K≤100000)处.约翰有
    两种办法移动,步行和瞬移:步行每秒种可以让约翰从z处走到x+l或x-l处;而瞬移则可让他在1秒内从x处消失,在2x处出现.然而那只逃逸的奶牛,悲剧地没有发现自己的处境多么糟糕,正站在那儿一动不动.
        那么,约翰需要多少时间抓住那只牛呢?

    Input

    * Line 1: Two space-separated integers: N and K

        仅有两个整数N和K.

     

    Output

    * Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.

        最短的时间.

    Sample Input

    5 17
    Farmer John starts at point 5 and the fugitive cow is at point 17.

    Sample Output

    4

     

    OUTPUT DETAILS:

    The fastest way for Farmer John to reach the fugitive cow is to

    move along the following path: 5-10-9-18-17, which takes 4 minutes.

    好裸的bfs……n的规模才10w

    原来还想的是二进制dp,结果发现我在没事找事……

    #include<cstdio>
    #include<iostream>
    #include<cstring>
    using namespace std;
    int n,m,head,tail=1;
    int dist[500001];
    int q[500001];
    inline bool mark(int x)
    {
    	return !(x<0||x>max(2*m+1,n+1));
    }
    int main()
    {
    	freopen("catchcow.in","r",stdin);
    	freopen("catchcow.out","w",stdout);
    	scanf("%d%d",&n,&m);
    	memset(dist,-1,sizeof(dist));
    	q[1]=n;dist[n]=0;
    	while (head<tail)
    	{
    		head++;
    		int now=q[head]-1;
    		if(mark(now)&&dist[now]==-1)
    		{
    			q[++tail]=now;
    			dist[now]=dist[q[head]]+1;
    		}
    		now=q[head]+1;
    		if(mark(now)&&dist[now]==-1)
    		{
    			q[++tail]=now;
    			dist[now]=dist[q[head]]+1;
    		}
    		now=q[head]*2;
    		if(mark(now)&&dist[now]==-1)
    		{
    			q[++tail]=now;
    			dist[now]=dist[q[head]]+1;
    		}
    		if(dist[m]!=-1) {printf("%d",dist[m]);return 0;}
    	}
    }
    

      

    ——by zhber,转载请注明来源
  • 相关阅读:
    常规放大电路和差分放大电路
    二级管工作原理(PN结原理)学习
    数字图像处理(MATLAB版)学习笔记(2)——第2章 灰度变换与空间滤波
    数字图像处理(MATLAB版)学习笔记(1)——第1章 绪言
    PPT制作线条动画
    MOSFET使用与H桥驱动问题
    WPF自定义控件(1)——仪表盘设计[1]
    WPF自定义控件(2)——图表设计[1]
    c# lamp表达式例子
    HashCode和equal方法的区别和联系
  • 原文地址:https://www.cnblogs.com/zhber/p/4036087.html
Copyright © 2020-2023  润新知