• Data Lake Analytics,大数据的ETL神器!


    0. Data Lake Analytics(简称DLA)介绍

    数据湖(Data Lake)是时下大数据行业热门的概念:https://en.wikipedia.org/wiki/Data_lake。基于数据湖做分析,可以不用做任何ETL、数据搬迁等前置过程,实现跨各种异构数据源进行大数据关联分析,从而极大的节省成本和提升用户体验。关于Data Lake的概念。

    终于,阿里云现在也有了自己的数据湖分析产品:https://www.aliyun.com/product/datalakeanalytics
    可以点击申请使用(目前公测阶段还属于邀测模式),体验本教程分析OTS数据之旅。
    产品文档:https://help.aliyun.com/product/70174.html

    1. ETL介绍

    ETL(https://en.wikipedia.org/wiki/Extract,_transform,_load)就是Extract、Transfrom、Load即抽取、转换、加载,是传统数仓和大数据的重要工具。

    抽取:就是从源系统抽取需要的数据,这些源系统是同构或异构的:比如Excel表格、XML文件、关系型数据库。
    转换:源系统的数据按照分析目的,转换成目标系统要求的格式,或者做数据清洗和数据加工。
    加载:把转换后的数据装载到目标数据库,作为联机分析、数据挖掘、数据展示的基础。

    整个ETL过程就像是在源系统和目标系统之间构建一个管道,数据在这个管道里源源不断的流动。

    2. DLA与ETL

    Data Placement Optimization(数据摆放优化)是目前云平台上的业务系统的主流架构方向和思路。架构师们会从读写性能、稳定性、强一致性、成本、易用性、开发效率等方面来考量不同存储引擎给业务上带来的好处,从而实现整个业务系统的完美的平衡状态。

    而这种跨异构数据源之间的数据搬迁,却不是一件容易的事情。很多ELT工具基本上属于框架级别,需要自己开发不少的辅助工具;同时表达能力也较弱,无法满足很多场景;另外对异构数据源的抽象和兼容性也不是那么完美。

    反观DLA,无论从哪方面来看,DLA都完美的契合ETL的需求场景。下图是DLA的简易架构图,DLA一开始就是基于“MPP计算引擎+存储计算分离+弹性高可用+异构数据集源”等架构原则来设计的,支持各种异构数据源读写是DLA的核心目标!

    通过连接异构数据源来执行select + join + subQuery等逻辑实现Extract,通过Filter+ Project + Aggregation + Sort + Functions等实现数据流转换和映射Transform,而通过insert实现Load,下面是一个例子:

    --基本格式
    insert into target_table (col1, col2, col3, ....)  --需要导入的列以及列的顺序
    select c1, c2, c3, ....                            --需要与导入列的类型兼容,顺序要确认清楚
    from ...                         --可以是任何你想要查询的数据目标
    where ...
    
    --下面是一个例子
    insert into target_table (id, name, age)  
    select s1.pk1, s2.name, s1.age            
    from source_table1 s1
    join source_table2 s2
    on s1.sid = s2.sid
    where s1.xxx = 'yyy'
    

    下面我们就尝试往不同的数据源导入数据吧。

    3. 实际测试(以TableStore:为例)

    • 准备DLA账号(已有测试账号)

      • 测试集群:上海region;
      • 账号账号:DLA测试账号;
    • 准备两个来源表(两个TPC-H的OSS表,customer和nation),用来做join和数据查询;

    • 准备一个TableStore(https://help.aliyun.com/document_detail/27280.html)的目标表;

    • 执行导入SQL,写入数据后校验结果;

    a)两个来源表定义:

    mysql> show create database tpch_50x_text;
    +---------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    | Database      | Create Database                                                                                                                                                        |
    +---------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    | tpch_50x_text | CREATE DATABASE `tpch_50x_text`
    WITH DBPROPERTIES (
        catalog = 'hive',
        location = 'oss://${您的bucket}/datasets/tpch/50x/text_date/'
    )
    COMMENT '' |
    +---------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    1 row in set (0.02 sec)
    
    mysql> show tables;
    +------------+
    | Table_Name |
    +------------+
    | customer   |
    | nation     |
    +------------+
    2 rows in set (0.03 sec)
    
    mysql> show create table customer;
    +----------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    | Table    | Create Table                                                                                                                                                                                                                                                                                                                                                                           |
    +----------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    | customer | CREATE EXTERNAL TABLE `tpch_50x_text`.`customer` (
        `c_custkey` int,
        `c_name` string,
        `c_address` string,
        `c_nationkey` int,
        `c_phone` string,
        `c_acctbal` double,
        `c_mktsegment` string,
        `c_comment` string
    )
    ROW FORMAT DELIMITED
        FIELDS TERMINATED BY '|'
    STORED AS `TEXTFILE`
    LOCATION 'oss://${您的bucket}/datasets/tpch/50x/text_date/customer_text' |
    +----------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    1 row in set (0.90 sec)
    
    mysql> show create table nation;
    +------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    | Table      | Create Table                                                                                                                                                                                                                                    |
    +------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    | nation     | CREATE EXTERNAL TABLE `tpch_50x_text`.`nation` (
        `n_nationkey` int,
        `n_name` string,
        `n_regionkey` int,
        `n_comment` string
    )
    ROW FORMAT DELIMITED
        FIELDS TERMINATED BY '|'
    STORED AS `TEXTFILE`
    LOCATION 'oss://${您的bucket}/datasets/tpch/50x/text_date/nation_text' |
    +------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    1 row in set (0.73 sec)
    
    

    b)准备TableStore的库和表

    ## 建库
    mysql> show create database etl_ots_test;
    +--------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    | Database     | Create Database                                                                                                                                                                |
    +--------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    | etl_ots_test | CREATE DATABASE `etl_ots_test`
    WITH DBPROPERTIES (
        catalog = 'ots',
        location = 'https://${您的instance}.cn-shanghai.ots-internal.aliyuncs.com',
        instance = '${您的instance}'
    )
    COMMENT '' |
    +--------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    1 row in set (0.02 sec)
    
    ## 使用库
    mysql> use etl_ots_test;
    Database changed
    
    ## 建表
    mysql> show create table test_insert;
    +-------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    | Table       | Create Table                                                                                                                                                                          |
    +-------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    | test_insert | CREATE EXTERNAL TABLE `test_insert` (
        `id1_int` int NOT NULL COMMENT '客户id主键',
        `c_address` varchar(20) NULL COMMENT '客户的地址',
        `c_acctbal` double NULL COMMENT '客户的account balance',
        PRIMARY KEY (`id1_int`)
    )
    COMMENT ''             |
    +-------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    1 row in set (0.03 sec)
    

    以下是实际数据的截图:

    c)开始导入数据,确保导入字段顺序和类型兼容性:

    ## 检查数据,都是空的
    mysql> select * from etl_ots_test.test_insert;
    Empty set (0.31 sec)
    
    mysql> use tpch_50x_text;
    Database changed
    
    ## 查询下nation数据,其中CANADA的nationkey是3,后续要找这个数据
    mysql> select n_nationkey, n_name from nation;
    +-------------+----------------+
    | n_nationkey | n_name         |
    +-------------+----------------+
    |           0 | ALGERIA        |
    |           1 | ARGENTINA      |
    |           2 | BRAZIL         |
    |           3 | CANADA         |
    |           4 | EGYPT          |
    |           5 | ETHIOPIA       |
    |           6 | FRANCE         |
    |           7 | GERMANY        |
    |           8 | INDIA          |
    |           9 | INDONESIA      |
    |          10 | IRAN           |
    |          11 | IRAQ           |
    |          12 | JAPAN          |
    |          13 | JORDAN         |
    |          14 | KENYA          |
    |          15 | MOROCCO        |
    |          16 | MOZAMBIQUE     |
    |          17 | PERU           |
    |          18 | CHINA          |
    |          19 | ROMANIA        |
    |          20 | SAUDI ARABIA   |
    |          21 | VIETNAM        |
    |          22 | RUSSIA         |
    |          23 | UNITED KINGDOM |
    |          24 | UNITED STATES  |
    +-------------+----------------+
    25 rows in set (0.37 sec)
    
    ## 查询下customer数据,我们只关注nationkey=3以及c_mktsegment='BUILDING'的数据
    mysql> select count(*) from customer where c_nationkey = 3 and c_mktsegment = 'BUILDING';
    +----------+
    | count(*) |
    +----------+
    |    60350 |
    +----------+
    1 row in set (0.66 sec)
    
    ## 查询下customer数据,我们只关注nationkey=3以及c_mktsegment='BUILDING'的数据
    mysql> select * from customer where c_nationkey = 3 and c_mktsegment = 'BUILDING' order by c_custkey limit 3;
    +-----------+--------------------+-------------------------+-------------+-----------------+-----------+--------------+----------------------------------------------------------------------------------------------------+
    | c_custkey | c_name             | c_address               | c_nationkey | c_phone         | c_acctbal | c_mktsegment | c_comment                                                                                          |
    +-----------+--------------------+-------------------------+-------------+-----------------+-----------+--------------+----------------------------------------------------------------------------------------------------+
    |        13 | Customer#000000013 | nsXQu0oVjD7PM659uC3SRSp |           3 | 13-761-547-5974 |   3857.34 | BUILDING     | ounts sleep carefully after the close frays. carefully bold notornis use ironic requests. blithely |
    |        27 | Customer#000000027 | IS8GIyxpBrLpMT0u7       |           3 | 13-137-193-2709 |   5679.84 | BUILDING     |  about the carefully ironic pinto beans. accoun                                                    |
    |        40 | Customer#000000040 | gOnGWAyhSV1ofv          |           3 | 13-652-915-8939 |    1335.3 | BUILDING     | rges impress after the slyly ironic courts. foxes are. blithely                                    |
    +-----------+--------------------+-------------------------+-------------+-----------------+-----------+--------------+----------------------------------------------------------------------------------------------------+
    3 rows in set (0.78 sec)
    

    导入之前我们想清楚需求:把国家是'CANADA'的,客户的market segmentation为'BUILDING'的客户找到,然后对c_custkey排序,选择前10条数据,然后选择他们的c_custkey、c_address、c_acctbal三列,清晰到OTS的test_insert表中,以备后续使用。

    ##先查询下数据,看看有几条数据
    mysql> select c.c_custkey, c.c_address, c.c_acctbal 
        -> from tpch_50x_text.customer c
        -> join tpch_50x_text.nation n 
        -> on c.c_nationkey = n.n_nationkey
        -> where n.n_name = 'CANADA' 
        -> and c.c_mktsegment = 'BUILDING' 
        -> order by c.c_custkey
        -> limit 10;
    +-----------+--------------------------------+-----------+
    | c_custkey | c_address                      | c_acctbal |
    +-----------+--------------------------------+-----------+
    |        13 | nsXQu0oVjD7PM659uC3SRSp        |   3857.34 |
    |        27 | IS8GIyxpBrLpMT0u7              |   5679.84 |
    |        40 | gOnGWAyhSV1ofv                 |    1335.3 |
    |        64 | MbCeGY20kaKK3oalJD,OT          |   -646.64 |
    |       255 | I8Wz9sJBZTnEFG08lhcbfTZq3S     |   3196.07 |
    |       430 | s2yfPEGGOqHfgkVSs5Rs6 qh,SuVmR |   7905.17 |
    |       726 | 4w7DOLtN9Hy,xzZMR              |   6253.81 |
    |       905 | f iyVEgCU2lZZPCebx5bGp5        |   -600.73 |
    |      1312 | f5zgMB4MHLMSHaX0tDduHAmVd4     |    9459.5 |
    |      1358 | t23gsl4TdVXqTZha DioEHIq5w7y   |   5149.23 |
    +-----------+--------------------------------+-----------+
    10 rows in set (1.09 sec)
    
    ##开始导入
    mysql> insert into etl_ots_test.test_insert (id1_int ,c_address, c_acctbal)
        -> select c.c_custkey, c.c_address, c.c_acctbal 
        -> from tpch_50x_text.customer c
        -> join tpch_50x_text.nation n 
        -> on c.c_nationkey = n.n_nationkey
        -> where n.n_name = 'CANADA' 
        -> and c.c_mktsegment = 'BUILDING' 
        -> order by c.c_custkey
        -> limit 10;
    +------+
    | rows |
    +------+
    |   10 |
    +------+
    1 row in set (2.14 sec)
    
    ## 验证结果,没有问题:
    mysql> select * from etl_ots_test.test_insert;
    +---------+--------------------------------+-----------+
    | id1_int | c_address                      | c_acctbal |
    +---------+--------------------------------+-----------+
    |      13 | nsXQu0oVjD7PM659uC3SRSp        |   3857.34 |
    |      27 | IS8GIyxpBrLpMT0u7              |   5679.84 |
    |      40 | gOnGWAyhSV1ofv                 |    1335.3 |
    |      64 | MbCeGY20kaKK3oalJD,OT          |   -646.64 |
    |     255 | I8Wz9sJBZTnEFG08lhcbfTZq3S     |   3196.07 |
    |     430 | s2yfPEGGOqHfgkVSs5Rs6 qh,SuVmR |   7905.17 |
    |     726 | 4w7DOLtN9Hy,xzZMR              |   6253.81 |
    |     905 | f iyVEgCU2lZZPCebx5bGp5        |   -600.73 |
    |    1312 | f5zgMB4MHLMSHaX0tDduHAmVd4     |    9459.5 |
    |    1358 | t23gsl4TdVXqTZha DioEHIq5w7y   |   5149.23 |
    +---------+--------------------------------+-----------+
    10 rows in set (0.27 sec)
    

    d)注意点:

    虽然有ETL工具快速导入导出,但也有些问题需要注意的,比如:

    • 如果导入任务时间太长,请走异步模式,否则连接断开可能会影响任务正常运行;
    • TableStore目前的insert是根据主键覆盖,主键不会去重判断的,请务必不能对你正常的数据表做插入;
    • 目前DLA和TableStore的事务能力还不够,可能会出现中断,已导入的数据不会清楚,需要自行清理;
    • 列的个数和列的类型,需要自己对齐保障,否则会报错;

    4. 其他数据源导入

    整个过程是不是很简单?是不是想要导入其他场景的数据源?对DLA而言,底层任何数据源都以相同方式处理,只要确保其他数据源的库、表在DLA中正常创建,就可以正常的读写,实现ETL啦!赶紧试试吧!

    其他相关的文档:

    原文链接
    更多技术干货 请关注阿里云云栖社区微信号 :yunqiinsight

  • 相关阅读:
    rust 实战 实现一个线程工作池 ThreadPool
    rust Cell 与 RefCell的区别
    使用pre标签显示原始文本并自动换行
    rust实战 newtype模式
    什么是幻读,怎么解决幻读
    rust match 模式匹配摘录
    Elasticsearch 8的版本来了;可以直接在 Elasticsearch 中使用 PyTorch Machine Learning 模型
    神奇的库 phone
    python中单例的实现
    斐波那契查找
  • 原文地址:https://www.cnblogs.com/zhaowei121/p/10457407.html
Copyright © 2020-2023  润新知