• 基于 mykernel 2.0 编写一个操作系统内核


    实验要求

    1,按照https://github.com/mengning/mykernel 的说明配置mykernel 2.0,熟悉Linux内核的编译。
    2,基于mykernel 2.0编写一个操作系统内核,参照https://github.com/mengning/mykernel 提供的范例代码。
    3,简要分析操作系统内核核心功能及运行工作机制。

    实验内容

    安装linux系统,下载mykernel2.0补丁,下载在linux虚拟机上下载开发工具qemu,以及下载linux源码,具体代码如下:

    wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch
    sudo apt install axel
    axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz
    xz -d linux-5.4.34.tar.xz
    tar -xvf linux-5.4.34.tar
    cd linux-5.4.34
    patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch
    sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev
    make defconfig # Default configuration is based on 'x86_64_defconfig'
    make -j$(nproc) 
    sudo apt install qemu # install QEMU
    qemu-system-x86_64 -kernel arch/x86/boot/bzImage

    通过运行产生如下结果:


    通过mymain.c和 myinterrupt.c 程序可以看出 mymain.c 通过每次计数达到100000输出一次my_start_kernel here从而不停的执行。
    同时还具有一个中断处理程序的上下文环境,周期性的产生时钟中断信号,触发myinterrupt.c程序执行输出 my_timer_handler here。
    这样就通过Linux内核代码模拟了一个具有时钟中断和C代码执行环境的硬件平台。
    基于mykernel 2.0编写一个操作系统内核
    基于上述mykernel来编写一个操作系统内核,我们首先需要添加一个mypcb.h头文件,其代码如下:
    #define MAX_TASK_NUM        4
    #define KERNEL_STACK_SIZE   1024*2
    
    /* CPU-specific state of this task */
    struct Thread {
        unsigned long        ip;
        unsigned long        sp;
    };
    
    typedef struct PCB{
        int pid;
        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
        unsigned long stack[KERNEL_STACK_SIZE];
    
        /* CPU-specific state of this task */
    
        struct Thread thread;
        unsigned long    task_entry;
        struct PCB *next;
    }tPCB;
    
    void my_schedule(void);
    同时要修改mymain.c中的my_start_kernel函数,该函数是内核初始化函数,用来在内核启动时初始化一系列模块,具体添加代码如下:
    #include "mypcb.h"
    
    tPCB task[MAX_TASK_NUM];
    tPCB * my_current_task = NULL;
    
    volatile int my_need_sched = 0;
    
    void my_process(void);
    
    void __init my_start_kernel(void)
    
    {
        int pid = 0;
        int i;
    
        /* Initialize process 0*/
    
        task[pid].pid = pid;
        task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
        task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
        task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
        task[pid].next = &task[pid];
    
        /*fork more process */
    
        for(i=1;i<MAX_TASK_NUM;i++)
        {
            memcpy(&task[i],&task[0],sizeof(tPCB));
            task[i].pid = i;
            task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]);
            task[i].next = task[i-1].next;
            task[i-1].next = &task[i];
        }
    
        /* start process 0 by task[0] */
    
        pid = 0;
        my_current_task = &task[pid];
        asm volatile(
            "movq %1,%%rsp
    	"     /* set task[pid].thread.sp to rsp */
            "pushq %1
    	"             /* push rbp */
            "pushq %0
    	"             /* push task[pid].thread.ip */
            "ret
    	"                 /* pop task[pid].thread.ip to rip */
            : 
            : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/
        );
    } 
    
    int i = 0;
    void my_process(void)
    
    {    
        while(1)
        {
            i++;
            if(i%10000000 == 0)
            {
                printk(KERN_NOTICE "this is process %d -
    ",my_current_task->pid);
                if(my_need_sched == 1)
                {
                    my_need_sched = 0;
                    my_schedule();
                }
                printk(KERN_NOTICE "this is process %d +
    ",my_current_task->pid);
            }     
        }
    }
    my_start_kernel函数首先对0号进程进行初始化,将进程的程序入口地址设置为my_process 函数,
    接下来继续初始化剩余进程并将进程通过链表形式来进行链接,其中各进程之间的 pid 和栈顶指针以及指向下一进程的指针都不相同。
    最后通过一些列汇编代码来启动0号进程。接下来的my_process函数是通过进程运行完一个时间片后主动让出CPU的方式,
    通过判断my_need_sched的值来决定是否调用my_schedule()函数来进行进程之间的切换。

    下面修改myinterrupt.c的代码: #include "mypcb.h" extern tPCB task[MAX_TASK_NUM]; extern tPCB * my_current_task; extern volatile int my_need_sched; volatile int time_count = 0; /* * Called by timer interrupt. * it runs in the name of current running process, * so it use kernel stack of current running process */ void my_timer_handler(void) { if(time_count%1000 == 0 && my_need_sched != 1) { printk(KERN_NOTICE ">>>my_timer_handler here<<< "); my_need_sched = 1; } time_count ++ ; return; } void my_schedule(void) { tPCB * next; tPCB * prev; if(my_current_task == NULL || my_current_task->next == NULL) { return; } printk(KERN_NOTICE ">>>my_schedule<<< "); /* schedule */ next = my_current_task->next; prev = my_current_task; if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */ { my_current_task = next; printk(KERN_NOTICE ">>>switch %d to %d<<< ",prev->pid,next->pid); /* switch to next process */ asm volatile( "pushq %%rbp " /* save rbp of prev */ "movq %%rsp,%0 " /* save rsp of prev */ "movq %2,%%rsp " /* restore rsp of next */ "movq $1f,%1 " /* save rip of prev */ "pushq %3 " "ret " /* restore rip of next */ "1: " /* next process start here */ "popq %%rbp " : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); } return; }
    上述代码都修改完成后,重新编译内核,启动qemu,结果如下:

    简要分析进程切换核心汇编代码:
    asm volatile(
             "pushq %%rbp
    	"       /* 1 save rbp of prev */ 
             "movq %%rsp,%0
    	"     /* 2 save rsp of prev */
             "movq %2,%%rsp
    	"     /* 3 restore  rsp of next */
             "movq $1f,%1
    	"       /* 4 save rip of prev */
             "pushq %3
    	"        /* 5 save rip of next */   
             "ret
    	"               /* 6 restore  rip of next */
             "1:	"                  /* 7 next process start here */
             "popq %%rbp
    	"        /* 8 restore rbp of next  */
            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            : "m" (next->thread.sp),"m" (next->thread.ip)
          );
        }

    1. pushq %%rbp保存prev进程RBP寄存器的值到堆栈;

    2. movq %%rsp,%0保存prev进程RSP寄存器的值到prev->thread.sp,这时RSP寄存器指向进程的栈顶地址,实际上就是将prev进程的栈顶地址保存。

    3. movq %2,%%rsp将next进程的栈顶地址next->thread.sp放⼊RSP寄存器,完成了进程的堆栈切换。

    4. movq $1f,%1保存prev进程当前RIP寄存器值到prev->thread.ip,这⾥$1f是指标号1的地址。

    5. pushq %3把即将执⾏的next进程的指令地址next->thread.ip⼊栈。

    6. ret就是将压⼊栈中的next->thread.ip放⼊RIP寄存器,为什么不直接放⼊RIP寄存器呢?因为程序不能直接使⽤RIP寄存器,只能通过call、ret等指令间接改变RIP寄存器。



  • 相关阅读:
    HTML_from
    HTML_img
    python_Django默认转换器
    python_虚拟环境
    python_正则表达式
    mysql_pymysql模块
    mysql_权限管理
    mysql_子查询
    sudo权限造成的故障
    22.Linux定时任务
  • 原文地址:https://www.cnblogs.com/zhaopenghui/p/12884711.html
Copyright © 2020-2023  润新知