• win7上安装theano keras深度学习框架


    近期在学习深度学习,需要在本机上安装keras框架,好上手。上网查了一些资料,弄了几天今天终于完全搞好了。本次是使用GPU进行加速,使用cpu处理的请查看之前的随笔keras在win7下环境搭建

    本机配置:win7 64位的,4G内存,gtx970显卡

    安装条件:  

      vs2010(不一定非要是vs2010,恰好我有vs2010,应该是配置GPU编程时需要用到vs的编译器)

      cuda如果系统是64位的就下载64位,至于cuda的版本,有的说要和对应的显卡版本匹配,我就安装了8.0,实验来看,cuda版本和显卡型号貌似关系不是很大。

      cudnn是深度学习进行加速的。不是必选,但是有的话以后运行效率会高很多。版本什么的一定要配套。

    前面的过程和使用cpu计算是相同的。请参考之前随笔。keras在win7下环境搭建

    之前的步骤处理完之后,

    1 安装VS2010,只选择装C++语言就够。

    2 安装cuda 安装Cuda8,安装的时候,选择“自定义安装”,安装全部功能,还有要安装到默认位置最好,安装很简单,可能需要点时间。

      安装完后,打开环境变量应该会多出来2个变量,CUDA_PATH_V6_5和CUDA_PATH.

      打开cmd控制台命令行,输入命令nvcc –V回车(注意是大写V)就可以查看版本信息,如果安装正确会显示Cuda的版本号。

    nvcc: NVIDIA (R) Cuda compiler driver
    Copyright (c) 2005-2016 NVIDIA Corporation
    Built on Sat_Sep__3_19:05:48_CDT_2016
    Cuda compilation tools, release 8.0, V8.0.44

    3 修改配置.theanorc.txt,如下:

    [global]
    openmp=False
    device = gpu0
    floatX = float32
    allow_input_downcast=True
    [lib]
    cnmem = 1
    [blas]
    ldflags=
    [gcc]
    cxxflags=-ID:Anaconda2MinGW  #此处是gcc的路径
    [nvcc]
    flags = -LD:Anaconda2libs  #此处是Anaconda的路径 
    compiler_bindir = D:Program Files (x86)Microsoft Visual Studio 10.0VCin  #此处一定要和你安装的VS的路径保持一致,如果是默认安装的,应该是C:Program Files(x86)Microsoft Visual Studio 10.0VCin
    fastmath = True

    注意:网上有的配置文件中没有[lib]这个块,后面导入theano时会出现CNMeM is disabled提示。

    4 安装cudnn

      将下载来的文件解压,解压出cuda文件夹,里面包含3个文件夹。将设三个文件夹替换掉系统里面的对应文件,进行覆盖替换即可。C:Program FilesNVIDIA GPU Computing ToolkitCUDAv8.0

    注意:如果没有覆盖掉后面导入theano时会出现CuDNN not available提示。

    5 切换后端,因为我用的是theano,而keras默认使用tensorflow。切换方法有英文资料

    Switching from one backend to another

    If you have run Keras at least once, you will find the Keras configuration file at:

    ~/.keras/keras.json

    If it isn't there, you can create it.

    The default configuration file looks like this:

    {

        "image_dim_ordering": "tf",

        "epsilon": 1e-07,

        "floatx": "float32",

        "backend": "tensorflow"

    }

    Simply change the field backend to either "theano" or "tensorflow", and Keras will use the new configuration next time you run any Keras code.

    照着做就行了。

     

    6 此时正常来说应该就可以了,进行一下测试。测试代码如下

    测试1,在cmd命令窗口下输入

    >>> import theano
    DEBUG: nvcc STDOUT nvcc warning : The 'compute_20', 'sm_20', and 'sm_21' archite
    ctures are deprecated, and may be removed in a future release (Use -Wno-deprecat
    ed-gpu-targets to suppress warning).
    nvcc warning : nvcc support for Microsoft Visual Studio 2010 and earlier has bee
    n deprecated and is no longer being maintained
    mod.cu
    support for Microsoft Visual Studio 2010 has been deprecated!
       正在创建库 C:/Users/allen/AppData/Local/Theano/compiledir_Windows-7-6.1.7601-
    SP1-Intel64_Family_6_Model_60_Stepping_3_GenuineIntel-2.7.12-64/tmp1wscvx/265abc
    51f7c376c224983485238ff1a5.lib 和对象 C:/Users/allen/AppData/Local/Theano/compil
    edir_Windows-7-6.1.7601-SP1-Intel64_Family_6_Model_60_Stepping_3_GenuineIntel-2.
    7.12-64/tmp1wscvx/265abc51f7c376c224983485238ff1a5.exp
    
    Using gpu device 0: GeForce GTX 970 (CNMeM is enabled with initial size: 95.0% o
    f memory, cuDNN 5005)

      

    from theano import function, config, shared, sandbox
    import theano.tensor as T
    import numpy
    import time
    
    vlen = 10 * 30 * 768  # 10 x #cores x # threads per core
    iters = 1000
    
    rng = numpy.random.RandomState(22)
    x = shared(numpy.asarray(rng.rand(vlen), config.floatX))
    f = function([], T.exp(x))
    print(f.maker.fgraph.toposort())
    t0 = time.time()
    for i in range(iters):
        r = f()
    t1 = time.time()
    print("Looping %d times took %f seconds" % (iters, t1 - t0))
    print("Result is %s" % (r,))
    if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]):
        print('Used the cpu')
    else:
        print('Used the gpu')
    DEBUG: nvcc STDOUT nvcc warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning).
    nvcc warning : nvcc support for Microsoft Visual Studio 2010 and earlier has been deprecated and is no longer being maintained
    mod.cu
    support for Microsoft Visual Studio 2010 has been deprecated!
       ���ڴ����� C:/Users/allen/AppData/Local/Theano/compiledir_Windows-7-6.1.7601-SP1-Intel64_Family_6_Model_60_Stepping_3_GenuineIntel-2.7.12-64/tmpmdncsl/265abc51f7c376c224983485238ff1a5.lib �Ͷ��� C:/Users/allen/AppData/Local/Theano/compiledir_Windows-7-6.1.7601-SP1-Intel64_Family_6_Model_60_Stepping_3_GenuineIntel-2.7.12-64/tmpmdncsl/265abc51f7c376c224983485238ff1a5.exp
    
    Using gpu device 0: GeForce GTX 970 (CNMeM is enabled with initial size: 95.0% of memory, cuDNN 5005)
    
     
    [GpuElemwise{exp,no_inplace}(<CudaNdarrayType(float32, vector)>), HostFromGpu(GpuElemwise{exp,no_inplace}.0)]
    Looping 1000 times took 0.572000 seconds
    Result is [ 1.23178029  1.61879349  1.52278066 ...,  2.20771813  2.29967761
      1.62323296]
    Used the gpu

    如果显示使用GPU则一切正常。
  • 相关阅读:
    C#基础第五天
    基础学习14天 MD5加密
    C#基础第二天
    C#基础学习第一天
    Privacy Policy of ColorfulBroswer
    asp.net mvc 上传图片 摘自mvc 高级编程第311页
    多彩浏览器win10版 隐私声明
    uwp获取版本信息win10 VersionInfo
    uwp ,win10 post json
    windows phone 8.0 app 移植到windows10 app 页面类
  • 原文地址:https://www.cnblogs.com/zhaopengcheng/p/5992911.html
Copyright © 2020-2023  润新知