1、EM算法
2、混合高斯模型
from __future__ import print_function import numpy as np def generateData(k,mu,sigma,dataNum): ''' 产生混合高斯模型的数据 :param k: 比例系数 :param mu: 均值 :param sigma: 标准差 :param dataNum:数据个数 :return: 生成的数据 ''' # 初始化数据 dataArray = np.zeros(dataNum,dtype=np.float32) # 逐个依据概率产生数据 # 高斯分布个数 n = len(k) for i in range(dataNum): # 产生[0,1]之间的随机数 rand = np.random.random() Sum = 0 index = 0 while(index < n): Sum += k[index] if(rand < Sum): dataArray[i] = np.random.normal(mu[index],sigma[index]) break else: index += 1 return dataArray def normPdf(x,mu,sigma): ''' 计算均值为mu,标准差为sigma的正态分布函数的密度函数值 :param x: x值 :param mu: 均值 :param sigma: 标准差 :return: x处的密度函数值 ''' return (1./np.sqrt(2*np.pi))*(np.exp(-(x-mu)**2/(2*sigma**2))) def em(dataArray,k,mu,sigma,step = 10): ''' em算法估计高斯混合模型 :param dataNum: 已知数据个数 :param k: 每个高斯分布的估计系数 :param mu: 每个高斯分布的估计均值 :param sigma: 每个高斯分布的估计标准差 :param step:迭代次数 :return: em 估计迭代结束估计的参数值[k,mu,sigma] ''' # 高斯分布个数 n = len(k) # 数据个数 dataNum = dataArray.size # 初始化gama数组 gamaArray = np.zeros((n,dataNum)) for s in range(step): for i in range(n): for j in range(dataNum): Sum = sum([k[t]*normPdf(dataArray[j],mu[t],sigma[t]) for t in range(n)]) gamaArray[i][j] = k[i]*normPdf(dataArray[j],mu[i],sigma[i])/float(Sum) # 更新 mu for i in range(n): mu[i] = np.sum(gamaArray[i]*dataArray)/np.sum(gamaArray[i]) # 更新 sigma for i in range(n): sigma[i] = np.sqrt(np.sum(gamaArray[i]*(dataArray - mu[i])**2)/np.sum(gamaArray[i])) # 更新系数k for i in range(n): k[i] = np.sum(gamaArray[i])/dataNum return [k,mu,sigma] if __name__ == '__main__': # 参数的准确值 k = [0.3,0.4,0.3] mu = [2,4,3] sigma = [1,1,4] # 样本数 dataNum = 5000 # 产生数据 dataArray = generateData(k,mu,sigma,dataNum) # 参数的初始值 # 注意em算法对于参数的初始值是十分敏感的 k0 = [0.3,0.3,0.4] mu0 = [1,2,2] sigma0 = [1,1,1] step = 6 # 使用em算法估计参数 k1,mu1,sigma1 = em(dataArray,k0,mu0,sigma0,step) # 输出参数的值 print("参数实际值:") print("k:",k) print("mu:",mu) print("sigma:",sigma) print("参数估计值:") print("k1:",k1) print("mu1:",mu1) print("sigma1:",sigma1)