• 机器学习-向量机SVM


     一、介绍

    二、编程

    1、支持向量机的核函数

    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn import svm
    from sklearn.datasets import make_blobs

    X, y = make_blobs(n_samples=50, centers=2, random_state=6)
    clf = svm.SVC(kernel='rbf', C=1000)
    clf.fit(X, y)
    plt.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired)
    ax = plt.gca()
    xlim = ax.get_xlim()
    ylim = ax.get_ylim()
    xx = np.linspace(xlim[0], xlim[1], 30)
    yy = np.linspace(ylim[0], ylim[1], 30)
    YY, XX = np.meshgrid(yy, xx)
    xy = np.vstack([XX.ravel(), YY.ravel()]).T
    Z = clf.decision_function(xy).reshape(XX.shape)
    ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--'])
    ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100, linewidths=1, facecolors='none')
    plt.show()

    2、不同核函数的SVM对比

    from sklearn.datasets import load_wine

    def make_meshgrid(x, y, h=.02):
        x_min, x_max = x.min() - 1, x.max() + 1
        y_min, y_max = y.min() - 1, y.max() + 1
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
        return xx, yy

    def plot_contours(ax, clf, xx, yy, **params):
        Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)
        out = ax.contourf(xx, yy, Z, **params)
        return out

    wine = load_wine()
    X = wine.data[:, :2]
    y = wine.target

    C = 1.0
    models = (svm.SVC(kernel='linear', C=C),
                     svm.LinearSVC(C=C),
                     svm.SVC(kernel='rbf', gamma=0.7, C=C),
                     svm.SVC(kernel='poly', degree=3, C=C))
    models = (clf.fit(X, y) for clf in models)

    titles = ('SVC with linear kernel',
                'LinearSVC (linear kernel)',
                'SVC with RBF kernel',
                'SVC with polynomial (defree 3) kernel')

    fig, sub = plt.subplots(2, 2)
    plt.subplots_adjust(wspace=0.4, hspace=0.4)
    X0, X1 = X[:, 0], X[:, 1]
    xx, yy = make_meshgrid(X0, X1)

    for clf, title, ax in zip(models, titles, sub.flatten()):
        plot_contours(ax, clf, xx, yy,
                               cmap=plt.cm.plasma, alpha=0.8)
        ax.scatter(X0, X1, c=y, cmap=plt.cm.plasma, s=20, edgecolors='k')
        ax.set_xlim(xx.min(), xx.max())
        ax.set_ylim(yy.min(), yy.max())
        ax.set_xlabel('Feature 0')
        ax.set_ylabel('Feature 1')
        ax.set_title(title)

    plt.show()

     

     3、SVM实例-波士顿房价回归分析

    from sklearn.datasets import load_boston
    from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import train_test_split

    boston = load_boston()
    X, y = boston.data, boston.target
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=8)
    scaler = StandardScaler()
    scaler.fit(X_train)
    X_train_scaled = scaler.transform(X_train)
    X_test_scaled = scaler.transform(X_test)
    plt.plot(X_train_scaled.min(axis=0), 'v', label='train set min')
    plt.plot(X_train_scaled.max(axis=0), '^', label='train set max')
    plt.plot(X_test_scaled.min(axis=0), 'v', label='test set min')
    plt.plot(X_test_scaled.max(axis=0), '^', label='test set max')
    plt.show()

  • 相关阅读:
    jQuery之元素操作及事件绑定
    JS中常遇到的浏览器兼容问题和解决方法
    九九乘法表
    全选复习
    css基本知识
    js数组
    Spark常见错误问题汇总
    被问懵逼的Kafka面试题
    被问懵逼的数仓面试
    Flink模拟项目: 订单支付实时监控
  • 原文地址:https://www.cnblogs.com/zhaop8078/p/9744490.html
Copyright © 2020-2023  润新知