704、二分查找
基本思想:
- 如果目标值等于中间元素,则找到目标值。
- 如果目标值较小,继续在左侧搜索。
- 如果目标值较大,则继续在右侧搜索。
具体实现:
1、搜索时是在闭区间[left,right],target定义在这个区间内
初始化right的赋值是len(nums)-1,是最后一个元素的索引,
- while循环中的条件是<= 不是=
- if (nums[middle] >targrt) right = middle-1
- if (nums[middle] < target) left = middle +1
2、搜索时在半开半闭区间[left,right),target定义在这个区间
初始化right的赋值是len(nums)
- while循环中的条件是< 不是<=,因为left == right在区间[left,right)无意义
- if (nums[middle] >targrt) right = middle,去左区间寻找,而寻找区间是左闭右开的,所以right更新为middle
- if (nums[middle] < target) left = middle +1
代码:
class Solution: def search(self, nums: List[int], target: int) -> int: left = 0 right = len(nums) - 1 while left <= right: mid = int(left + (right-left)/2) # mid = left + (right-left)//2 if nums[mid] == target: return mid elif nums[mid] < target: left = mid + 1 elif nums[mid] > target: right = mid -1 return -1
第一种情况
class Solution { public int search(int[] nums, int target) { if (target < nums[0] || target > nums[nums.length -1]){ return -1; } int left = 0, right = nums.length - 1; while (left <= right){ int mid = left + ((right - left) >> 1); if (nums[mid] == target){ return mid; } else if (nums[mid] < target) { left = mid +1; } else { right = mid - 1; } } return -1; } }
第二种情况
class Solution { public int search(int[] nums, int target) { if (target < nums[0] || target > nums[nums.length -1]){ return -1; } int left = 0, right = nums.length; while (left < right){ int mid = left + ((right - left) >> 1); if (nums[mid] == target){ return mid; } else if (nums[mid] < target) { left = mid +1; } else { right = mid ; } } return -1; } }
34、在排序数组中查找元素的第一个和最后一个元素
基本思想:
寻找左侧边界的二分搜索
具体实现:
1.二分搜索中没有return -1,如果nums中不存在target这个值,还是会返回left
eg nums=[2,3,5,7]
target = 1,返回0,含义是nums中小于1的个数有0个
target = 8,返回4,含义是nums中小于8的个数有4个
这些返回的数会送去验证,验证是否是目标数
2、nums=[5,7,7,8,8,10] target=8
先得出靠左侧的8的下标=3,赋值给a
再让target+1=9,
没有找到9,但是会返回nums中比9小的数的个数有5个
返回5,赋值给b
3、第一个大于target的位置-1
得出答案[3,4]
4、假如找不到target,进行验证后返回[-1,-1]
代码:
class Solution(object): def searchRange(self,nums, target): """ :type nums: List[int] :type target: int :rtype: List[int] """ def left_func(nums,target): n = len(nums) left = 0 right = n -1 while(left <= right): mid = left + (right-left) // 2 if nums[mid] >= target: right = mid - 1 if nums[mid] < target: left = mid + 1 return left a = left_func(nums,target) b = left_func(nums,target+1) if a == len(nums) or nums[a] != target: return [-1,-1] else: return [a,b-1]
java
class Solution { public int[] searchRange(int[] nums, int target) { int a = binarySearch(nums, target); int b = binarySearch(nums, target + 1); if (a == nums.length || nums[a] != target){ return new int[]{-1,-1}; } else{ return new int[]{a,b-1}; } } public int binarySearch(int[] nums, int target){ int n = nums.length; int left = 0, right = n - 1; while (left <= right){ int mid = left + ((right - left) >> 1); if (nums[mid] >= target){ right = mid - 1; } else { left = mid +1; } } return left; } }