• Go 源码学习之--net/http


    其实自己不是很会看源码,但是学习优秀的源码是提升自己代码能力的一种方式,也可以对自己以后写代码有一个很好的影响,所以决定在之后的时间内,要有一个很好的习惯,阅读优秀的源码。刚开始自己会觉得看源码很痛苦,这个和我自己的方法有关系,刚开始自己总是想要知道源码的每一步操作,以及每个部分都是做什么,导致看着看着就看不下去了,所以也是从这次整理开始,调整自己阅读源码的方式,先去源码框架的主要流程,细枝末节后面等对整体框架有个了解,并且很清晰了,再回头来细致看,所以阅读过程中如果有不理解的地方自己先进行跳过,先对主体的框架进行一个很好的学习。

    对于golang,实现一个最简单的http server 非常简单,代码如下:

    package main
    
    import (
        "net/http"
        "fmt"
    )
    
    func Indexhandler(w http.ResponseWriter,r *http.Request)  {
        fmt.Fprintln(w,"hello world")
    }
    
    
    func main() {
        http.HandleFunc("/",Indexhandler)
        http.ListenAndServe("127.0.0.1",nil)
    }

    通过上面这个简单的例子,来一点一点学习go的net/http实现的http服务的原理

    HTTP

    理解HTTP相关的网络应用,主要关注两个地方-客户端(client)和服务端(server)
    两者的交互主要是client的request以及server的response,主要就在于如何接受client的request并向client返回response

    接收request的过程中,最重要的莫过于路由(router),即实现一个Multiplexer器。Go中既可以使用内置的mutilplexer --- DefautServeMux,也可以自定义。Multiplexer路由的目的就是为了找到处理器函数(handler),后者将对request进行处理,同时构建response

    流程为:

    Clinet -> Requests ->  [Multiplexer(router) -> handler  -> Response -> Clinet

    理解go中的http服务,最重要就是要理解Multiplexer和handler,Golang中的Multiplexer基于ServeMux结构,同时也实现了Handler接口。下面对几个重要概念说明:

    • hander函数: 具有func(w http.ResponseWriter, r *http.Requests)签名的函数
    • handler处理器(函数): 经过HandlerFunc结构包装的handler函数,它实现了ServeHTTP接口方法的函数。调用handler处理器的ServeHTTP方法时,即调用handler函数本身。
    • handler对象:实现了Handler接口ServeHTTP方法的结构。

    Golang 的htttp处理流程,如下图

    Handler

    Golang没有继承,类多态的方式可以通过接口实现。所谓接口则是定义声明了函数签名,任何结构只要实现了与接口函数签名相同的方法,就等同于实现了接口。go的http服务都是基于handler进行处理。

    type Handler interface {
        ServeHTTP(ResponseWriter, *Request)
    }

    任何结构体,只要实现了ServeHTTP方法,这个结构就可以称之为handler对象。ServeMux会使用handler并调用其ServeHTTP方法处理请求并返回响应。

    ServeMux

    ServeMux的源码:

    type ServeMux struct {
        mu    sync.RWMutex
        m     map[string]muxEntry
        hosts bool 
    }
    
    type muxEntry struct {
        explicit bool
        h        Handler
        pattern  string
    }

    ServeMux结构中最重要的字段为m,这是一个map,key是一些url模式,value是一个muxEntry结构,后者里定义存储了具体的url模式和handler。

    当然,所谓的ServeMux也实现了ServeHTTP接口,也算是一个handler,不过ServeMux的ServeHTTP方法不是用来处理request和respone,而是用来找到路由注册的handler

    Server

    除了ServeMux和Handler,还有一个结构Server需要了解。从http.ListenAndServe的源码可以看出,它创建了一个server对象,并调用server对象的ListenAndServe方法:

    func ListenAndServe(addr string, handler Handler) error {
        server := &Server{Addr: addr, Handler: handler}
        return server.ListenAndServe()
    }

    查看server的结构如下:

    type Server struct {
        Addr         string        
        Handler      Handler       
        ReadTimeout  time.Duration 
        WriteTimeout time.Duration 
        TLSConfig    *tls.Config   
    
        MaxHeaderBytes int
    
        TLSNextProto map[string]func(*Server, *tls.Conn, Handler)
    
        ConnState func(net.Conn, ConnState)
        ErrorLog *log.Logger
        disableKeepAlives int32     nextProtoOnce     sync.Once 
        nextProtoErr      error     
    }

    server结构存储了服务器处理请求常见的字段。其中Handler字段也保留Handler接口。如果Server接口没有提供Handler结构对象,那么会使用DefautServeMux做multiplexer,后面再做分析。

    创建HTTP服务
    创建一个http服务,大致需要经历两个过程,首先需要注册路由,即提供url模式和handler函数的映射,其次就是实例化一个server对象,并开启对客户端的监听。

    再看gohttp服务的代码

    http.HandleFunc("/", indexHandler)

     即是注册路由。

    http.ListenAndServe("127.0.0.1:8000", nil)
    
    或者:
    
    server := &Server{Addr: addr, Handler: handler}
    
    server.ListenAndServe()

    注册路由

    net/http包暴露的注册路由的api很简单,http.HandleFunc选取了DefaultServeMux作为multiplexer:

    func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
        DefaultServeMux.HandleFunc(pattern, handler)
    }

    DefaultServeMux是ServeMux的一个实例。当然http包也提供了NewServeMux方法创建一个ServeMux实例,默认则创建一个DefaultServeMux:

    // NewServeMux allocates and returns a new ServeMux.
    func NewServeMux() *ServeMux { return new(ServeMux) }
    
    // DefaultServeMux is the default ServeMux used by Serve.
    var DefaultServeMux = &defaultServeMux
    
    var defaultServeMux ServeMux

    DefaultServeMux的HandleFunc(pattern, handler)方法实际是定义在ServeMux下的:

    // HandleFunc registers the handler function for the given pattern.
    func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
        mux.Handle(pattern, HandlerFunc(handler))
    }

    HandlerFunc是一个函数类型。同时实现了Handler接口的ServeHTTP方法。使用HandlerFunc类型包装一下路由定义的indexHandler函数,其目的就是为了让这个函数也实现ServeHTTP方法,即转变成一个handler处理器(函数)。

    type HandlerFunc func(ResponseWriter, *Request)
    
    // ServeHTTP calls f(w, r).
    func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
        f(w, r)
    }

    我们最开始写的例子中
    http.HandleFunc("/",Indexhandler)
    这样 IndexHandler 函数也有了ServeHTTP方法。ServeMux的Handle方法,将会对pattern和handler函数做一个map映射:

    // Handle registers the handler for the given pattern.
    // If a handler already exists for pattern, Handle panics.
    func (mux *ServeMux) Handle(pattern string, handler Handler) {
        mux.mu.Lock()
        defer mux.mu.Unlock()
    
        if pattern == "" {
            panic("http: invalid pattern " + pattern)
        }
        if handler == nil {
            panic("http: nil handler")
        }
        if mux.m[pattern].explicit {
            panic("http: multiple registrations for " + pattern)
        }
    
        if mux.m == nil {
            mux.m = make(map[string]muxEntry)
        }
        mux.m[pattern] = muxEntry{explicit: true, h: handler, pattern: pattern}
    
        if pattern[0] != '/' {
            mux.hosts = true
        }
    
        // Helpful behavior:
        // If pattern is /tree/, insert an implicit permanent redirect for /tree.
        // It can be overridden by an explicit registration.
        n := len(pattern)
        if n > 0 && pattern[n-1] == '/' && !mux.m[pattern[0:n-1]].explicit {
            // If pattern contains a host name, strip it and use remaining
            // path for redirect.
            path := pattern
            if pattern[0] != '/' {
                // In pattern, at least the last character is a '/', so
                // strings.Index can't be -1.
                path = pattern[strings.Index(pattern, "/"):]
            }
            url := &url.URL{Path: path}
            mux.m[pattern[0:n-1]] = muxEntry{h: RedirectHandler(url.String(), StatusMovedPermanently), pattern: pattern}
        }
    }

    Handle函数的主要目的在于把handler和pattern模式绑定到map[string]muxEntry的map上,其中muxEntry保存了更多pattern和handler的信息,还记得前面讨论的Server结构吗?Server的m字段就是map[string]muxEntry这样一个map。

    此时,pattern和handler的路由注册完成。接下来就是如何开始server的监听,以接收客户端的请求。

    注册好路由之后,启动web服务还需要开启服务器监听。http的ListenAndServer方法中可以看到创建了一个Server对象,并调用了Server对象的同名方法:

    func ListenAndServe(addr string, handler Handler) error {
        server := &Server{Addr: addr, Handler: handler}
        return server.ListenAndServe()
    }
    // ListenAndServe listens on the TCP network address srv.Addr and then
    // calls Serve to handle requests on incoming connections.
    // Accepted connections are configured to enable TCP keep-alives.
    // If srv.Addr is blank, ":http" is used.
    // ListenAndServe always returns a non-nil error.
    func (srv *Server) ListenAndServe() error {
        addr := srv.Addr
        if addr == "" {
            addr = ":http"
        }
        ln, err := net.Listen("tcp", addr)
        if err != nil {
            return err
        }
        return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})
    }

    Server的ListenAndServe方法中,会初始化监听地址Addr,同时调用Listen方法设置监听。最后将监听的TCP对象传入Serve方法:

    // Serve accepts incoming connections on the Listener l, creating a
    // new service goroutine for each. The service goroutines read requests and
    // then call srv.Handler to reply to them.
    //
    // For HTTP/2 support, srv.TLSConfig should be initialized to the
    // provided listener's TLS Config before calling Serve. If
    // srv.TLSConfig is non-nil and doesn't include the string "h2" in
    // Config.NextProtos, HTTP/2 support is not enabled.
    //
    // Serve always returns a non-nil error. After Shutdown or Close, the
    // returned error is ErrServerClosed.
    func (srv *Server) Serve(l net.Listener) error {
        defer l.Close()
        if fn := testHookServerServe; fn != nil {
            fn(srv, l)
        }
        var tempDelay time.Duration // how long to sleep on accept failure
    
        if err := srv.setupHTTP2_Serve(); err != nil {
            return err
        }
    
        srv.trackListener(l, true)
        defer srv.trackListener(l, false)
    
        baseCtx := context.Background() // base is always background, per Issue 16220
        ctx := context.WithValue(baseCtx, ServerContextKey, srv)
        for {
            rw, e := l.Accept()
            if e != nil {
                select {
                case <-srv.getDoneChan():
                    return ErrServerClosed
                default:
                }
                if ne, ok := e.(net.Error); ok && ne.Temporary() {
                    if tempDelay == 0 {
                        tempDelay = 5 * time.Millisecond
                    } else {
                        tempDelay *= 2
                    }
                    if max := 1 * time.Second; tempDelay > max {
                        tempDelay = max
                    }
                    srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
                    time.Sleep(tempDelay)
                    continue
                }
                return e
            }
            tempDelay = 0
            c := srv.newConn(rw)
            c.setState(c.rwc, StateNew) // before Serve can return
            go c.serve(ctx)
        }
    }

    监听开启之后,一旦客户端请求到底,go就开启一个协程处理请求,主要逻辑都在serve方法之中。

    serve方法比较长,其主要职能就是,创建一个上下文对象,然后调用Listener的Accept方法用来 获取连接数据并使用newConn方法创建连接对象。最后使用goroutein协程的方式处理连接请求。因为每一个连接都开起了一个协程,请求的上下文都不同,同时又保证了go的高并发。serve也是一个长长的方法:

    // Serve a new connection.
    func (c *conn) serve(ctx context.Context) {
        c.remoteAddr = c.rwc.RemoteAddr().String()
        ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr())
        defer func() {
            if err := recover(); err != nil && err != ErrAbortHandler {
                const size = 64 << 10
                buf := make([]byte, size)
                buf = buf[:runtime.Stack(buf, false)]
                c.server.logf("http: panic serving %v: %v
    %s", c.remoteAddr, err, buf)
            }
            if !c.hijacked() {
                c.close()
                c.setState(c.rwc, StateClosed)
            }
        }()
    
        if tlsConn, ok := c.rwc.(*tls.Conn); ok {
            if d := c.server.ReadTimeout; d != 0 {
                c.rwc.SetReadDeadline(time.Now().Add(d))
            }
            if d := c.server.WriteTimeout; d != 0 {
                c.rwc.SetWriteDeadline(time.Now().Add(d))
            }
            if err := tlsConn.Handshake(); err != nil {
                c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
                return
            }
            c.tlsState = new(tls.ConnectionState)
            *c.tlsState = tlsConn.ConnectionState()
            if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) {
                if fn := c.server.TLSNextProto[proto]; fn != nil {
                    h := initNPNRequest{tlsConn, serverHandler{c.server}}
                    fn(c.server, tlsConn, h)
                }
                return
            }
        }
    
        // HTTP/1.x from here on.
    
        ctx, cancelCtx := context.WithCancel(ctx)
        c.cancelCtx = cancelCtx
        defer cancelCtx()
    
        c.r = &connReader{conn: c}
        c.bufr = newBufioReader(c.r)
        c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)
    
        for {
            w, err := c.readRequest(ctx)
            if c.r.remain != c.server.initialReadLimitSize() {
                // If we read any bytes off the wire, we're active.
                c.setState(c.rwc, StateActive)
            }
            if err != nil {
                const errorHeaders = "
    Content-Type: text/plain; charset=utf-8
    Connection: close
    
    "
    
                if err == errTooLarge {
                    // Their HTTP client may or may not be
                    // able to read this if we're
                    // responding to them and hanging up
                    // while they're still writing their
                    // request. Undefined behavior.
                    const publicErr = "431 Request Header Fields Too Large"
                    fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
                    c.closeWriteAndWait()
                    return
                }
                if isCommonNetReadError(err) {
                    return // don't reply
                }
    
                publicErr := "400 Bad Request"
                if v, ok := err.(badRequestError); ok {
                    publicErr = publicErr + ": " + string(v)
                }
    
                fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
                return
            }
    
            // Expect 100 Continue support
            req := w.req
            if req.expectsContinue() {
                if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
                    // Wrap the Body reader with one that replies on the connection
                    req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
                }
            } else if req.Header.get("Expect") != "" {
                w.sendExpectationFailed()
                return
            }
    
            c.curReq.Store(w)
    
            if requestBodyRemains(req.Body) {
                registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead)
            } else {
                if w.conn.bufr.Buffered() > 0 {
                    w.conn.r.closeNotifyFromPipelinedRequest()
                }
                w.conn.r.startBackgroundRead()
            }
    
            // HTTP cannot have multiple simultaneous active requests.[*]
            // Until the server replies to this request, it can't read another,
            // so we might as well run the handler in this goroutine.
            // [*] Not strictly true: HTTP pipelining. We could let them all process
            // in parallel even if their responses need to be serialized.
            // But we're not going to implement HTTP pipelining because it
            // was never deployed in the wild and the answer is HTTP/2.
            serverHandler{c.server}.ServeHTTP(w, w.req)
            w.cancelCtx()
            if c.hijacked() {
                return
            }
            w.finishRequest()
            if !w.shouldReuseConnection() {
                if w.requestBodyLimitHit || w.closedRequestBodyEarly() {
                    c.closeWriteAndWait()
                }
                return
            }
            c.setState(c.rwc, StateIdle)
            c.curReq.Store((*response)(nil))
    
            if !w.conn.server.doKeepAlives() {
                // We're in shutdown mode. We might've replied
                // to the user without "Connection: close" and
                // they might think they can send another
                // request, but such is life with HTTP/1.1.
                return
            }
    
            if d := c.server.idleTimeout(); d != 0 {
                c.rwc.SetReadDeadline(time.Now().Add(d))
                if _, err := c.bufr.Peek(4); err != nil {
                    return
                }
            }
            c.rwc.SetReadDeadline(time.Time{})
        }
    }

    使用defer定义了函数退出时,连接关闭相关的处理。然后就是读取连接的网络数据,并处理读取完毕时候的状态。接下来就是调用serverHandler{c.server}.ServeHTTP(w, w.req)方法处理请求了。最后就是请求处理完毕的逻辑。serverHandler是一个重要的结构,它近有一个字段,即Server结构,同时它也实现了Handler接口方法ServeHTTP,并在该接口方法中做了一个重要的事情,初始化multiplexer路由多路复用器。如果server对象没有指定Handler,则使用默认的DefaultServeMux作为路由Multiplexer。并调用初始化Handler的ServeHTTP方法。

    // serverHandler delegates to either the server's Handler or
    // DefaultServeMux and also handles "OPTIONS *" requests.
    type serverHandler struct {
        srv *Server
    }
    
    func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
        handler := sh.srv.Handler
        if handler == nil {
            handler = DefaultServeMux
        }
        if req.RequestURI == "*" && req.Method == "OPTIONS" {
            handler = globalOptionsHandler{}
        }
        handler.ServeHTTP(rw, req)
    }

    这里DefaultServeMux的ServeHTTP方法其实也是定义在ServeMux结构中的,相关代码如下:

    // Find a handler on a handler map given a path string.
    // Most-specific (longest) pattern wins.
    func (mux *ServeMux) match(path string) (h Handler, pattern string) {
        // Check for exact match first.
        v, ok := mux.m[path]
        if ok {
            return v.h, v.pattern
        }
    
        // Check for longest valid match.
        var n = 0
        for k, v := range mux.m {
            if !pathMatch(k, path) {
                continue
            }
            if h == nil || len(k) > n {
                n = len(k)
                h = v.h
                pattern = v.pattern
            }
        }
        return
    }
    func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
    
        // CONNECT requests are not canonicalized.
        if r.Method == "CONNECT" {
            return mux.handler(r.Host, r.URL.Path)
        }
    
        // All other requests have any port stripped and path cleaned
        // before passing to mux.handler.
        host := stripHostPort(r.Host)
        path := cleanPath(r.URL.Path)
        if path != r.URL.Path {
            _, pattern = mux.handler(host, path)
            url := *r.URL
            url.Path = path
            return RedirectHandler(url.String(), StatusMovedPermanently), pattern
        }
    
        return mux.handler(host, r.URL.Path)
    }
    
    // handler is the main implementation of Handler.
    // The path is known to be in canonical form, except for CONNECT methods.
    func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
        mux.mu.RLock()
        defer mux.mu.RUnlock()
    
        // Host-specific pattern takes precedence over generic ones
        if mux.hosts {
            h, pattern = mux.match(host + path)
        }
        if h == nil {
            h, pattern = mux.match(path)
        }
        if h == nil {
            h, pattern = NotFoundHandler(), ""
        }
        return
    }
    
    // ServeHTTP dispatches the request to the handler whose
    // pattern most closely matches the request URL.
    func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
        if r.RequestURI == "*" {
            if r.ProtoAtLeast(1, 1) {
                w.Header().Set("Connection", "close")
            }
            w.WriteHeader(StatusBadRequest)
            return
        }
        h, _ := mux.Handler(r)
        h.ServeHTTP(w, r)
    }

    mux的ServeHTTP方法通过调用其Handler方法寻找注册到路由上的handler函数,并调用该函数的ServeHTTP方法,本例则是IndexHandler函数。

    mux的Handler方法对URL简单的处理,然后调用handler方法,后者会创建一个锁,同时调用match方法返回一个handler和pattern。

    在match方法中,mux的m字段是map[string]muxEntry图,后者存储了pattern和handler处理器函数,因此通过迭代m寻找出注册路由的patten模式与实际url匹配的handler函数并返回。

    返回的结构一直传递到mux的ServeHTTP方法,接下来调用handler函数的ServeHTTP方法,即IndexHandler函数,然后把response写到http.RequestWirter对象返回给客户端。

    上述函数运行结束即serverHandler{c.server}.ServeHTTP(w, w.req)运行结束。接下来就是对请求处理完毕之后上希望和连接断开的相关逻辑。

    至此,Golang中一个完整的http服务介绍完毕,包括注册路由,开启监听,处理连接,路由处理函数。
    多数的web应用基于HTTP协议,客户端和服务器通过request-response的方式交互。一个server并不可少的两部分莫过于路由注册和连接处理。Golang通过一个ServeMux实现了的multiplexer路由多路复用器来管理路由。同时提供一个Handler接口提供ServeHTTP用来实现handler处理其函数,后者可以处理实际request并构造response。

    ServeMux和handler处理器函数的连接桥梁就是Handler接口。ServeMux的ServeHTTP方法实现了寻找注册路由的handler的函数,并调用该handler的ServeHTTP方法。ServeHTTP方法就是真正处理请求和构造响应的地方。

  • 相关阅读:
    access将一个表中的记录插入到另一个表中
    在Windows Azure中使用CQRS
    Hazelcast 2.0发布,推出堆外存储和分布式备份
    Telefónica与Mozilla携手开拓首个开放互联网设备
    拥有完整硬件访问权限的本地Silverlight
    Mozilla BrowserQuest
    Doclist压缩方法简介
    CodePlex提供Git支持
    主流浏览器版本发布历史
    access截取字符
  • 原文地址:https://www.cnblogs.com/zhaof/p/8569743.html
Copyright © 2020-2023  润新知