• 矩阵的特征值分解和奇异值分解


    定理:(奇异值分解)设A为m*n阶复矩阵,则存在m阶酉阵U和n阶酉阵V,使得:

                     A = U*S*V’

    其中S=diag(σi2,……,σr),σi>0

    (i=1,…,r),r=rank(A)。

    推论:设A为m*n阶实矩阵,则存在m阶正交阵U和n阶正交阵V,使得

    A = U*S*V’

    其中S=diag(σi2,……,σr),σi>0

    (i=1,…,r),r=rank(A)。

    1、奇异值分解非常有用,对于矩阵A(m*n),存在U(m*m),V(n*n),S(m*n),满足A = U*S*V’。U和V中分别是A的奇异向量,而S是A的奇异值。AA'的正交单位特征向量组成U,特征值组成S'S,A'A的正交单位特征向量组成V,特征值(与AA'相同)组成SS'。因此,奇异值分解和特征值问题紧密联系。

    2、奇异值分解提供了一些关于A的信息,例如非零奇异值的数目(S的阶数)和A的秩相同,一旦秩r确定,那么U的前r列构成了A的列向量空间的正交基。

    关于奇异值分解中当考虑的对象是实矩阵时: S对角元的平方恰为A'A特征值的说明. (对复矩阵类似可得)

    从上面我们知道矩阵的奇异值分解为: A=USV, 其中U,V是正交阵(所谓B为正交阵是指B'=B-1, 即B'B=I), S为对角阵.

    A'A=V'S'U'USV=V'S'SV=V-1S2V

    上式中, 一方面因为S是对角阵, S'S=S2, 且S2对角元就是S的对角元的平方. 另一方面注意到A'A是相似与S2的, 因此与S2有相同特征值.

    其实奇异值可以认为是一种特殊的矩阵范数!

  • 相关阅读:
    创建react项目
    解决移动端弹窗下页面滚动问题
    前端常用的几种加密方式
    http请求状态码
    vue代理配置
    自动化测试实操案例详解 | Windows应用篇
    Google 再见 Java
    一次诡异的 SQL 数量统计查询不准的问题
    Maven
    淘宝技术分享:手淘亿级移动端接入层网关的技术演进之路
  • 原文地址:https://www.cnblogs.com/zhanjxcom/p/4119040.html
Copyright © 2020-2023  润新知