(平均值不等式) 任意 $n$ 个非负实数的几何平均值小于或等于它们的算术平均值, 即 $forall a_igeq 0 (i=1,2,cdots,n)$, 恒有 $$ex sqrt[n]{a_1a_2cdots a_n}leq cfrac{a_1+a_2+cdots+a_n}{n}, eex$$ 且其中的等号当且仅当 $a_1=a_2=cdots=a_n$ 时成立.
(平均值不等式) 任意 $n$ 个非负实数的几何平均值小于或等于它们的算术平均值, 即 $forall a_igeq 0 (i=1,2,cdots,n)$, 恒有 $$ex sqrt[n]{a_1a_2cdots a_n}leq cfrac{a_1+a_2+cdots+a_n}{n}, eex$$ 且其中的等号当且仅当 $a_1=a_2=cdots=a_n$ 时成立.