在一个有向图中,节点分别标记为 0, 1, ..., n-1
。这个图中的每条边不是红色就是蓝色,且存在自环或平行边。
red_edges
中的每一个 [i, j]
对表示从节点 i
到节点 j
的红色有向边。类似地,blue_edges
中的每一个 [i, j]
对表示从节点 i
到节点 j
的蓝色有向边。
返回长度为 n
的数组 answer
,其中 answer[X]
是从节点 0
到节点 X
的最短路径的长度,且路径上红色边和蓝色边交替出现。如果不存在这样的路径,那么 answer[x] = -1
。
示例 1:
输入:n = 3, red_edges = [[0,1],[1,2]], blue_edges = [] 输出:[0,1,-1]
示例 2:
输入:n = 3, red_edges = [[0,1]], blue_edges = [[2,1]] 输出:[0,1,-1]
示例 3:
输入:n = 3, red_edges = [[1,0]], blue_edges = [[2,1]] 输出:[0,-1,-1]
示例 4:
输入:n = 3, red_edges = [[0,1]], blue_edges = [[1,2]] 输出:[0,1,2]
示例 5:
输入:n = 3, red_edges = [[0,1],[0,2]], blue_edges = [[1,0]] 输出:[0,1,1]
提示:
1 <= n <= 100
red_edges.length <= 400
blue_edges.length <= 400
red_edges[i].length == blue_edges[i].length == 2
0 <= red_edges[i][j], blue_edges[i][j] < n
/** * @param {number} n * @param {number[][]} red_edges * @param {number[][]} blue_edges * @return {number[]} */ var shortestAlternatingPaths = function(n, red_edges, blue_edges) { let blueDP = new Array(n+1).fill(0); let redDp = new Array(n+1).fill(0); let redMap = new Map(),blueMap = new Map(); for(let [k,v] of red_edges){ let arr = redMap.get(k)||[]; arr.push(v); redMap.set(k,arr); } for(let [k,v] of blue_edges){ let arr = blueMap.get(k)||[]; arr.push(v); blueMap.set(k,arr); } let stack = [[0,0,"b"],[0,0,"r"]]; let ans = new Array(n).fill(Infinity); let visitedRed=new Set(); let visitedBlue=new Set(); visitedRed.add(0) visitedBlue.add(0) while(stack.length>0){ let [node,level,color] = stack.shift(); ans[node]=Math.min(level,ans[node]); if(color==='r'){ let nextColor = blueMap.get(node)||[]; for(let c of nextColor){ if(!visitedRed.has(c)){ visitedRed.add(c); stack.push([c,level+1,'b']); } } }else{ let nextColor = redMap.get(node)||[]; for(let c of nextColor){ if(!visitedBlue.has(c)){ visitedBlue.add(c); stack.push([c,level+1,'r']); } } } } return ans.map(i=>i===Infinity?-1:i); };
/** * @param {number} n * @param {number[][]} red_edges * @param {number[][]} blue_edges * @return {number[]} */ var shortestAlternatingPaths = function(n, red_edges, blue_edges) { let graph=Array(n).fill().map(()=>Array(n).fill(null)) let dis=Array(n).fill().map(()=>({r:Infinity,b:Infinity})) dis[0].r=0 dis[0].b=0 for(let i=0;i<red_edges.length;i++){ let [from,to]=red_edges[i] if(!graph[from][to])graph[from][to]={} graph[from][to].r=true } for(let i=0;i<blue_edges.length;i++){ let [from,to]=blue_edges[i] if(!graph[from][to])graph[from][to]={} graph[from][to].b=true } let arr=[0] while(arr.length>0){ let len=arr.length for(let i=0;i<len;i++){ let from=arr.shift() for(let j=0;j<graph[from].length;j++){ let to=j if(!graph[from][to])continue let {r,b}=graph[from][to] let needPush=false if(r){ if(dis[from].b+1<dis[to].r){ dis[to].r=dis[from].b+1 needPush=true } } if(b){ if(dis[from].r+1<dis[to].b){ dis[to].b=dis[from].r+1 needPush=true } } if(needPush){ arr.push(to) } } } } let res=[] for(let i=0;i<dis.length;i++){ let min=Math.min(dis[i].r,dis[i].b) if(min===Infinity)min=-1 res[i]=min } // console.log(dis) return res };