• NLP(四十四):BERTflow


    BERT-flow来自论文《On the Sentence Embeddings from Pre-trained Language Models》,中了EMNLP 2020,主要是用flow模型校正了BERT出来的句向量的分布,从而使得计算出来的cos相似度更为合理一些。由于笔者定时刷Arixv的习惯,早在它放到Arxiv时笔者就看到了它,但并没有什么兴趣,想不到前段时间小火了一把,短时间内公众号、知乎等地出现了不少的解读,相信读者们多多少少都被它刷屏了一下。

    从实验结果来看,BERT-flow确实是达到了一个新SOTA,但对于这一结果,笔者的第一感觉是:不大对劲!当然,不是说结果有问题,而是根据笔者的理解,flow模型不大可能发挥关键作用。带着这个直觉,笔者做了一些分析,果不其然,笔者发现尽管BERT-flow的思路没有问题,但只要一个线性变换就可以达到相近的效果,flow模型并不是十分关键。

    余弦相似度的假设 #

    一般来说,我们语义相似度比较或检索,都是给每个句子算出一个句向量来,然后算它们的夹角余弦来比较或者排序。那么,我们有没有思考过这样的一个问题:余弦相似度对所输入的向量提出了什么假设呢?或者说,满足什么条件的向量用余弦相似度做比较效果会更好呢?

    我们知道,两个向量x,yx,y的内积的几何意义就是“各自的模长乘以它们的夹角余弦”,所以余弦相似度就是两个向量的内积并除以各自的模长,对应的坐标计算公式是

    cos(x,y)=i=1dxiyii=1dx2i−−−−−√i=1dy2i−−−−−√(1)cos⁡(x,y)=∑i=1dxiyi∑i=1dxi2∑i=1dyi2


    然而,别忘了一件事情,上述等号只在“标准正交基”下成立。换句话说,向量的“夹角余弦”本身是具有鲜明的几何意义的,但上式右端只是坐标的运算,坐标依赖于所选取的坐标基,基底不同,内积对应的坐标公式就不一样,从而余弦值的坐标公式也不一样。

    因此,假定BERT句向量已经包含了足够的语义(比如可以重构出原句子),那么如果它用公式(1)(1)算余弦值来比较句子相似度时表现不好,那么原因可能就是此时的句向量所属的坐标系并非标准正交基。那么,我们怎么知道它具体用了哪种基底呢?原则上没法知道,但是我们可以去猜。猜测的依据是我们在给向量集合选择基底时,会尽量地用好每一个基向量,从统计学的角度看,这就体现为每个分量的使用都是独立的、均匀的,如果这组基是标准正交基,那么对应的向量集应该表现出“各项同性”来。

    当然,这不算是什么推导,只是一个启发式引导,它告诉我们如果一个向量的集合满足各向同性,那么我们可以认为它源于标准正交基,此时可以考虑用式(1)(1)算相似度;反之,如果它并不满足各向同性,那么可以想办法让它变得更加各向同性一些,然后再用式(1)(1)算相似度,而BERT-flow正是想到了“flow模型”这个办法。

    flow模型的碎碎念 #

    依笔者来看,flow模型真的是一种让人觉得一言难尽的模型了,关于它的碎碎念又可以写上几页纸,这里尽量长话短说。2018年中,OpenAI发布了Glow模型,效果看起来很不错,这吸引了笔者进一步去学习flow模型,甚至还去复现了一把Glow模型,相关工作记录在《细水长flow之NICE:流模型的基本概念与实现》《细水长flow之RealNVP与Glow:流模型的传承与升华》中,如果还不了解flow模型的,欢迎去看看这两篇博客。简单来说,flow模型是一个向量变换模型,它可以将输入数据的分布转化为标准正态分布,而显然标准正态分布是各向同性的,所以BERT-flow就选择了flow模型。

    那么flow模型有什么毛病吗?其实之前在文章《细水长flow之可逆ResNet:极致的暴力美学》就已经吐槽过了,这里重复一下:

    (flow模型)通过比较巧妙的设计,使得模型每一层的逆变换比较简单,而且雅可比矩阵是一个三角阵,从而雅可比行列式很容易计算。这样的模型在理论上很优雅漂亮,但是有一个很严重的问题:由于必须保证逆变换简单和雅可比行列式容易计算,那么每一层的非线性变换能力都很弱。事实上像Glow这样的模型,每一层只有一半的变量被变换,所以为了保证充分的拟合能力,模型就必须堆得非常深(比如256的人脸生成,Glow模型堆了大概600个卷积层,两亿参数量),计算量非常大。

    看到这里,读者就能理解为什么笔者开头说看到BERT-flow的第一感觉就是“不对劲”了。上述吐槽告诉我们,flow模型其实是很弱的;然后BERT-flow里边所用的flow模型是多大呢?是一个level=2、depth=3的Glow模型,这两个参数大家可能没什么概念,反正就是很小,以至于整个模型并没有增加什么计算量。所以,笔者的“不对劲”直觉就是:

    flow模型本身很弱,BERT-flow里边使用的flow模型更弱,所以flow模型不大可能在BERT-flow中发挥至关重要的作用。反过来想,那就是也许我们可以找到更简单直接的方法达到BERT-flow的效果。

    标准化协方差矩阵 #

    经过探索,笔者还真找到了这样的方法,正如本文标题所说,它只是一个线性变换。

    其实思想很简单,我们知道标准正态分布的均值为0、协方差矩阵为单位阵,那么我们不妨将句向量的均值变换为0、协方差矩阵变换为单位阵试试看?假设(行)向量集合为{xi}Ni=1{xi}i=1N,我们执行变换

    x~i=(xiμ)W(2)(2)x~i=(xi−μ)W


    使得{x~i}Ni=1{x~i}i=1N的均值为0、协方差矩阵为单位阵。了解传统数据挖掘的读者可能知道,这实际上就相当于传统数据挖掘中的白化操作(Whitening),所以该方法笔者称之为BERT-whitening

    均值为0很简单,让μ=1Ni=1Nxiμ=1N∑i=1Nxi即可,有点难度的是WW矩阵的求解。将原始数据的协方差矩阵记为

    Σ=1Ni=1N(xiμ)(xiμ)=(1Ni=1Nxixi)μμ(3)(3)Σ=1N∑i=1N(xi−μ)⊤(xi−μ)=(1N∑i=1Nxi⊤xi)−μ⊤μ


    那么不难得到变换后的数据协方差矩阵为Σ~=WΣWΣ~=W⊤ΣW,所以我们实际上要解方程

    WΣW=IΣ=(W)1W1=(W1)W1(4)W⊤ΣW=I⇒Σ=(W⊤)−1W−1=(W−1)⊤W−1


    我们知道协方差矩阵ΣΣ是一个半正定对称矩阵,半正定对称矩阵都具有如下形式的SVD分解

    Σ=UΛU(5)(5)Σ=UΛU⊤


    其中UU是一个正交矩阵,而ΛΛ是一个对角阵,并且对角线元素都是正的,因此直接让W1=Λ−−√UW−1=ΛU⊤就可以完成求解:

    W=UΛ1−−−−√(6)(6)W=UΛ−1

    Numpy的参考代码为:

    def compute_kernel_bias(vecs):
        """计算kernel和bias
        vecs.shape = [num_samples, embedding_size],
        最后的变换:y = (x + bias).dot(kernel)
        """
        mu = vecs.mean(axis=0, keepdims=True)
        cov = np.cov(vecs.T)
        u, s, vh = np.linalg.svd(cov)
        W = np.dot(u, np.diag(1 / np.sqrt(s)))
        return W, -mu

    可能会有人问答大语料怎么办的问题。首先,上述算法只需要知道全体句向量的均值向量μRdμ∈Rd和协方差矩阵ΣRd×dΣ∈Rd×d(dd是词向量维度),μμ是全体句向量xixi的均值,均值是可以递归计算的:

    μn+1=nn+1μn+1n+1xn+1(7)(7)μn+1=nn+1μn+1n+1xn+1


    同理,协方差矩阵ΣΣ也只不过是全体xixixi⊤xi的均值再减去μμμ⊤μ,自然也是可以递归计算的:

    Σn+1=nn+1(Σn+μnμn)+1n+1xn+1xn+1μn+1μn+1(8)(8)Σn+1=nn+1(Σn+μn⊤μn)+1n+1xn+1⊤xn+1−μn+1⊤μn+1


    既然可以递归,那么就意味着我们是可以在有限内存下计算μ,Σμ,Σ的,因此对于大语料来说BERT-whitening也不成问题的。

    相比于BERT-flow #

    现在,我们就可以测试一下上述BERT-whitening的效果了。为了跟BERT-flow对比,笔者用bert4keras在STS-B任务上进行了测试,参考脚本在:

    效果比较如下:

    BERTbase-last2avg(论文结果)BERTbase-flow(target, 论文结果)BERTbase-last2avg(个人复现)BERTbase-whitening(target, 个人实现)BERTlarge-last2avg(论文结果)BERTlarge-flow(target, 论文结果)BERTlarge-last2avg(个人复现)BERTlarge-whitening(target, 个人实现)STS-B59.0470.7259.0471.2059.5672.2659.5971.98STS-BBERTbase-last2avg(论文结果)59.04BERTbase-flow(target, 论文结果)70.72BERTbase-last2avg(个人复现)59.04BERTbase-whitening(target, 个人实现)71.20BERTlarge-last2avg(论文结果)59.56BERTlarge-flow(target, 论文结果)72.26BERTlarge-last2avg(个人复现)59.59BERTlarge-whitening(target, 个人实现)71.98

    可以看到,简单的BERT-whitening确实能取得跟BERT-flow媲美的结果。除了STS-B之外,笔者的同事在中文业务数据内做了类似的比较,结果都表明BERT-flow带来的提升跟BERT-whitening是相近的,这表明,flow模型的引入可能没那么必要了,因为flow模型的层并非常见的层,它需要专门的实现,并且训练起来也有一定的工作量,而BERT-whitening的实现很简单,就一个线性变换,可以轻松套到任意的句向量模型中。(当然,非要辩的话,也可以说whitening是用线性变换实现的flow模型...)

    注:这里顺便补充一句,BERT-flow论文里边说的last2avg,本来含义是最后两层输出的平均向量,但它的代码实际上是“第一层+最后一层”输出的平均向量,相关讨论参考ISSUE

    降维效果还能更好 #

    现在我们知道BERT-whitening的变换矩阵W=UΛ1−−−−√W=UΛ−1可以将数据的协方差矩阵变换成单位阵,如果我们不考虑Λ1−−−−√Λ−1,直接用UU来变换,结果如何呢?不难得出,如果只用UU来变换,那么数据的协方差矩阵就变成了ΛΛ,它是个对角阵。

    前面说了,UU是一个正交矩阵,它相当于只是旋转了一下整体数据,不改变样本之间的相对位置,换句话说它是完全“保真”的变换。而ΛΛ的每个对角线元素,则衡量了它所在的那一维数据的变化幅度。如果它的值很小,说明这一维特征的变化很小,接近一个常数,那么就意味着原来句向量所在可能只是一个更低维的空间,我们就可以去掉这一维特征,在降维的同时还可以使得余弦相似度的结果更为合理。

    事实上,SVD出来的对角矩阵ΛΛ已经从大到小排好序了,所以我们只需要保留前面若干维,就可以到达这个降维效果。熟悉线性代数的读者应该清楚,这个操作其实就是PCA!而代码只需要修改一行:

    def compute_kernel_bias(vecs, n_components=256):
        """计算kernel和bias
        vecs.shape = [num_samples, embedding_size],
        最后的变换:y = (x + bias).dot(kernel)
        """
        mu = vecs.mean(axis=0, keepdims=True)
        cov = np.cov(vecs.T)
        u, s, vh = np.linalg.svd(cov)
        W = np.dot(u, np.diag(1 / np.sqrt(s)))
        return W[:, :n_components], -mu

    效果如下:

    BERTbase-last2avg(论文结果)BERTbase-flow(target, 论文结果)BERTbase-last2avg(个人复现)BERTbase-whitening(target, 个人实现)BERTbase-whitening-256(target, 个人实现)BERTlarge-last2avg(论文结果)BERTlarge-flow(target, 论文结果)BERTlarge-last2avg(个人复现)BERTlarge-whitening(target, 个人实现)BERTlarge-whitening-384(target, 个人实现)STS-B59.0470.7259.0471.2071.4259.5672.2659.5971.9872.66STS-BBERTbase-last2avg(论文结果)59.04BERTbase-flow(target, 论文结果)70.72BERTbase-last2avg(个人复现)59.04BERTbase-whitening(target, 个人实现)71.20BERTbase-whitening-256(target, 个人实现)71.42BERTlarge-last2avg(论文结果)59.56BERTlarge-flow(target, 论文结果)72.26BERTlarge-last2avg(个人复现)59.59BERTlarge-whitening(target, 个人实现)71.98BERTlarge-whitening-384(target, 个人实现)72.66

    从上表可以看出,我们将base版本的768维只保留前256维,那么效果还有所提升,并且由于降维了,向量检索速度肯定也能大大加快;类似地,将large版的1024维只保留前384维,那么降维的同时也提升了效果。这个结果表明,无监督训练出来的句向量其实是“通用型”的,对于特定领域内的应用,里边有很多特征是冗余的,剔除这些冗余特征,往往能达到提速又提效的效果。

    相比之下,flow模型是可逆的、不降维的,这在某些场景下是好处,但在不少场景下也是缺点,因为它无法剔除冗余维度,限制了性能,比如GAN的研究表明,通过一个256维的高斯向量就可以随机生成1024×10241024×1024的人脸图,这表明这些人脸图其实只是构成了一个相当低维的流形,但是如果用flow模型来做,因为要保证可逆性,就得强行用1024×1024×31024×1024×3那么多维的高斯向量来随机生成,计算成本大大增加,而且效果还上不去。

    (注:后续实验结果,请看《无监督语义相似度哪家强?我们做了个比较全面的评测》。)

    所以最终结论就是 #

    所以,目前的结果就是:笔者的若干实验表明,通过简单的线性变换(BERT-whitening)操作,效果基本上能媲美BERT-flow模型,这表明往句向量模型里边引入flow模型可能并非那么关键,它对分布的校正可能仅仅是浅层的,而通过线性变换直接校正句向量的协方差矩阵就能达到相近的效果。同时,BERT-whitening还支持降维操作,能达到提速又提效的效果。

    转:https://kexue.fm/archives/8069

  • 相关阅读:
    转:Windows Phone 7 设计简介
    Windows Phone开发(15):资源
    Windows Phone开发(16):样式和控件模板
    转: kali msfvenom生成木马
    转:Uncovering Drupalgeddon 2(cve-2018-7600)漏洞深度解析(附漏洞利用代码地址)
    转:XSS知识大总结
    转:perl源码审计
    perl相关知识
    python引入模块时import与from ... import的区别
    转:Exploiting Windows 10 in a Local Network with WPAD/PAC and JScript
  • 原文地址:https://www.cnblogs.com/zhangxianrong/p/15919228.html
Copyright © 2020-2023  润新知