• TensorFlow经典案例4:实现logistic回归


    #TensorFlow实现Logistic 回归
    import tensorflow as tf
    
    #导入手写数字集
    from tensorflow.examples.tutorials.mnist import input_data
    
    mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
    
    #学习参数
    learning_rate = 0.01
    training_epoches = 25
    batch_size = 100
    display_step = 1
    
    #构造图
    x = tf.placeholder(tf.float32,[None,784])
    y = tf.placeholder(tf.float32,[None,10])
    
    W = tf.Variable(tf.zeros([784,10]))
    b = tf.Variable(tf.zeros([10]))
    
    prediction = tf.nn.softmax(tf.matmul(x,W) + b)
    cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(prediction),reduction_indices=1))
    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
    init = tf.global_variables_initializer()
    
    with tf.Session() as sess:
        sess.run(init)
        for epoch in range(training_epoches):
            avg_cost = 0.
            total_batch = int(mnist.train.num_examples/batch_size)
            for i in range(total_batch):
                batch_xs,batch_ys = mnist.train.next_batch(batch_size)
                _,c =sess.run([optimizer,cost],feed_dict={x:batch_xs,y:batch_ys})
                avg_cost += c / total_batch
            if (epoch+1) % display_step == 0:
                print("Epoch:","%0.4d" %(epoch+1),"cost","{:.9f}".format(avg_cost))
        print("训练结束")
    
        correct_prediction = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.int32))
        print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
    

      

  • 相关阅读:
    c#下实现ping操作
    DevExpress 经典常用功能代码收集
    WPF – 使用触发器
    XtraGrid使用方法
    [读书笔记]STL源码剖析
    [微软面试100题]6170
    [读书笔记]Thinking in C++
    [转][算法]google page rank算法
    [微软面试100题]7180
    [转][算法]链接分析算法之:HITS算法
  • 原文地址:https://www.cnblogs.com/zhangshilin/p/7224658.html
Copyright © 2020-2023  润新知