• python-迭代器和生成器


    迭代器

    迭代是Python最强大的功能之一,是访问集合元素的一种方式。。

    迭代器是一个可以记住遍历的位置的对象。

    迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。

    迭代器对象要求支持迭代器协议(可迭代协议——凡是可迭代的内部都有一个__iter__方法)的对象,在Python中,支持迭代器协议就是实现对象的__iter__()next()方法。其中__iter__()方法返回迭代器对象本身next()方法返回容器的下一个元素,在结尾时引发StopIteration异常。

    __iter__()和next()方法

    这两个方法是迭代器最基本的方法,一个用来获得迭代器对象,一个用来获取容器中的下一个元素。

    对于可迭代对象,可以使用内建函数iter()来获取它的迭代器对象:

    >>>list=[1,2,3,4]

    >>> it = iter(list) # 创建迭代器对象
    >>> print (next(it)) # 输出迭代器的下一个元素
    1
    >>> print (next(it))
    2

    >>>
    print (next(it))
    ......

    如果我们一直取next取到迭代器里已经没有元素了,就会抛出一个异常StopIteration,告诉我们,列表中已经没有有效的元素了。

    这个时候,我们就要使用异常处理机制来把这个异常处理掉。

    list=[1,2,3,4]
    it = iter(list) 
    while True:
        try:
            item =next(it)
            print(item)
        except StopIteration:
            break

    判断迭代器和可迭代对象的两种方法:

    第一种:

    from collections import Iterable
    from collections import Iterator
    #判断是否是迭代器 和 可迭代对象的简便方法
    s = 'abc'
    print(isinstance(s,Iterable))
    print(isinstance(s,Iterator))
    print(isinstance(iter(s),Iterator))#转化成迭代器

    第二种

    #判断内部是不是实现了 __next__
    '__next__' in dir(o)

    迭代器总结

    #可迭代协议  :  内部实现了__iter__方法
    
    #迭代器协议  :  内部实现了__iter__ __next__方法
    
    #可迭代和迭代器的不同点 : 迭代器多实现了一个__next__方法
    
    #可迭代和迭代器的相同点 : 都可以用for循环
    
    #判断迭代器和可迭代的方法
    #第一种:判断内部是不是实现了 __next__
    #'__next__' in dir(o)
    
    #第二种:
    # from collections import Iterable  #可迭代
    # from collections import Iterator  #迭代器
    # isinstance(o,Iterable)
    # isinstance(o,Iterator)
    
    #迭代器的特点
    #可以用for循环
    #可以节省内存
    #你只能用一次  l = [1,2,3,4]
    迭代器总结

    生成器

    在 Python 中,使用了 yield 的函数被称为生成器(generator)。

    跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。

    在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回yield的值。并在下一次执行 next()方法时从当前位置继续运行。

    初识生成器

    我们知道的迭代器有两种:一种是调用方法直接返回的,一种是可迭代对象通过执行iter方法得到的,迭代器有的好处是可以节省内存。

    如果在某些情况下,我们也需要节省内存,就只能自己写。我们自己写的这个能实现迭代器功能的东西就叫生成器。

     

    Python中提供的生成器:

    1.生成器函数:常规函数定义,但是,使用yield语句而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次重它离开的地方继续执行

    2.生成器表达式:类似于列表推导,但是,生成器返回按需产生结果的一个对象,而不是一次构建一个结果列表

     

    生成器Generator:

      本质:迭代器(所以自带了__iter__方法和__next__方法,不需要我们去实现)

      特点:惰性运算,开发者自定义

    生成器函数

    一个包含yield关键字的函数就是一个生成器函数。yield可以为我们从函数中返回值,但是yield又不同于return,return的执行意味着程序的结束,调用生成器函数不会得到返回的具体的值,而是得到一个可迭代的对象。每一次获取这个可迭代对象的值,就能推动函数的执行,获取新的返回值。直到函数执行结束。

    import time
    def genrator_fun1():
        a = 1
        print('现在定义了a变量')
        yield a
        b = 2
        print('现在又定义了b变量')
        yield b
    
    g1 = genrator_fun1()
    print('g1 : ',g1)       #打印g1可以发现g1就是一个生成器
    print('-'*20)   #我是华丽的分割线
    print(next(g1))
    time.sleep(1)   #sleep一秒看清执行过程
    print(next(g1))
    
    初识生成器函数

    生成器有什么好处呢?就是不会一下子在内存中生成太多数据

    假如我想让工厂给学生做校服,生产2000000件衣服,我和工厂一说,工厂应该是先答应下来,然后再去生产,我可以一件一件的要,也可以根据学生一批一批的找工厂拿。
    而不能是一说要生产2000000件衣服,工厂就先去做生产2000000件衣服,等回来做好了,学生都毕业了。。。

    #初识生成器二
    
    def produce():
        """生产衣服"""
        for i in range(2000000):
            yield "生产了第%s件衣服"%i
    
    product_g = produce()
    print(product_g.__next__()) #要一件衣服
    print(product_g.__next__()) #再要一件衣服
    print(product_g.__next__()) #再要一件衣服
    num = 0
    for i in product_g:         #要一批衣服,比如5件
        print(i)
        num +=1
        if num == 5:
            break
    
    #到这里我们找工厂拿了8件衣服,我一共让我的生产函数(也就是produce生成器函数)生产2000000件衣服。
    #剩下的还有很多衣服,我们可以一直拿,也可以放着等想拿的时候再拿
    
    初识生成器二

    更多应用

    import time
    
    
    def tail(filename):
        f = open(filename)
        f.seek(0, 2) #从文件末尾算起
        while True:
            line = f.readline()  # 读取文件中新的文本行
            if not line:
                time.sleep(0.1)
                continue
            yield line
    
    tail_g = tail('tmp')
    for line in tail_g:
        print(line)
    
    生成器监听文件输入的例子
    def averager():
        total = 0.0
        count = 0
        average = None
        while True:
            term = yield average
            total += term
            count += 1
            average = total/count
    
    
    g_avg = averager()
    next(g_avg)
    print(g_avg.send(10))
    print(g_avg.send(30))
    print(g_avg.send(5))
    
    计算移动平均值(1)
    def init(func):  #在调用被装饰生成器函数的时候首先用next激活生成器
        def inner(*args,**kwargs):
            g = func(*args,**kwargs)
            next(g)
            return g
        return inner
    
    @init
    def averager():
        total = 0.0
        count = 0
        average = None
        while True:
            term = yield average
            total += term
            count += 1
            average = total/count
    
    
    g_avg = averager()
    # next(g_avg)   在装饰器中执行了next方法
    print(g_avg.send(10))
    print(g_avg.send(30))
    print(g_avg.send(5))
    
    计算移动平均值(2)_预激协程的装饰器
    def gen1():
        for c in 'AB':
            yield c
        for i in range(3):
            yield i
    
    print(list(gen1()))
    
    def gen2():
        yield from 'AB'
        yield from range(3)
    
    print(list(gen2()))
    
    #yield from

    列表推导式和生成器表达式

    #老男孩由于峰哥的强势加盟很快走上了上市之路,alex思来想去决定下几个鸡蛋来报答峰哥
    
    egg_list=['鸡蛋%s' %i for i in range(10)] #列表解析
    
    #峰哥瞅着alex下的一筐鸡蛋,捂住了鼻子,说了句:哥,你还是给我只母鸡吧,我自己回家下
    
    laomuji=('鸡蛋%s' %i for i in range(10))#生成器表达式
    print(laomuji)
    print(next(laomuji)) #next本质就是调用__next__
    print(laomuji.__next__())
    print(next(laomuji))
    
    峰哥与alex的故事

    总结:

    1.把列表解析的[]换成()得到的就是生成器表达式

    2.列表解析与生成器表达式都是一种便利的编程方式,只不过生成器表达式更节省内存

    3.Python不但使用迭代器协议,让for循环变得更加通用。大部分内置函数,也是使用迭代器协议访问对象的。例如, sum函数是Python的内置函数,该函数使用迭代器协议访问对象,而生成器实现了迭代器协议,所以,我们可以直接这样计算一系列值的和:

    sum(x ** 2 for x in xrange(4))
    

    而不用多此一举的先构造一个列表:

    sum([x ** 2 for x in xrange(4)]) 

    本章小结

    可迭代对象:

      拥有__iter__方法

      特点:惰性运算

      例如:range(),str,list,tuple,dict,set

    迭代器Iterator:

      拥有__iter__方法和__next__方法

      例如:iter(range()),iter(str),iter(list),iter(tuple),iter(dict),iter(set),reversed(list_o),map(func,list_o),filter(func,list_o),file_o

    生成器Generator:

      本质:迭代器,所以拥有__iter__方法和__next__方法

      特点:惰性运算,开发者自定义

    使用生成器的优点:

    延迟计算,一次返回一个结果。也就是说,它不会一次生成所有的结果,这对于大数据量处理,将会非常有用。

    #列表解析
    sum([i for i in range(100000000)])#内存占用大,机器容易卡死
     
    #生成器表达式
    sum(i for i in range(100000000))#几乎不占内存
    迭代器和生成器
    #什么是迭代器  : __iter__\__next__
    #怎么从迭代器中取值 : for
    ext
    #迭代器的好处:首先不依赖索引、节省内存空间、惰性计算
    
    #生成器
    #自定义的一个能够实现迭代器功能的就是生成器
    #1.生成器函数
    #带yield的函数,生成器函数调用时不执行任何函数中的代码,只是返回一个生成器
    #调用next时才执行函数中的内容,遇道yield停止,并返回yield的内容
    #send就是向生成器函数中传值的同时还执行next方法
    #一个要用send方法的生成器函数中至少有两个yield
    #一个生成器函数中有多少个yield就可以调用多少次(next+send)
    #生成器第一次被触发只能用next
    #2.生成器表达式
    #new_g = (i*i for i in range(100)) #new_g是一个生成器表达式
  • 相关阅读:
    【转】c#文件操作大全(一)
    Visual Assist安装、破解方法
    web socket多线程实时监听
    SFTP上传下载
    数据库分页代码
    JAVA H5微信分享
    Eclipse中activiti插件的安装
    HTTP请求报文和HTTP响应报文
    CodeVS 1013&1029
    Codeforces 805D/804B
  • 原文地址:https://www.cnblogs.com/zhangningyang/p/7274160.html
Copyright © 2020-2023  润新知