• HDU 6181 次短路(K短路)


    Two Paths

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 153428/153428 K (Java/Others)
    Total Submission(s): 613    Accepted Submission(s): 312


    Problem Description
    You are given a undirected graph with n nodes (numbered from 1 to n) and m edges. Alice and Bob are now trying to play a game. 
    Both of them will take different route from 1 to n (not necessary simple).
    Alice always moves first and she is so clever that take one of the shortest path from 1 to n.
    Now is the Bob's turn. Help Bob to take possible shortest route from 1 to n.
    There's neither multiple edges nor self-loops.
    Two paths S and T are considered different if and only if there is an integer i, so that the i-th edge of S is not the same as the i-th edge of T or one of them doesn't exist.
     
    Input
    The first line of input contains an integer T(1 <= T <= 15), the number of test cases.
    The first line of each test case contains 2 integers n, m (2 <= n, m <= 100000), number of nodes and number of edges. Each of the next m lines contains 3 integers a, b, w (1 <= a, b <= n, 1 <= w <= 1000000000), this means that there's an edge between node a and node b and its length is w.
    It is guaranteed that there is at least one path from 1 to n.
    Sum of n over all test cases is less than 250000 and sum of m over all test cases is less than 350000.
     
    Output
    For each test case print length of valid shortest path in one line.
     
    Sample Input
    2 3 3 1 2 1 2 3 4 1 3 3 2 1 1 2 1
     
    Sample Output
    5 3
    Hint
    For testcase 1, Alice take path 1 - 3 and its length is 3, and then Bob will take path 1 - 2 - 3 and its length is 5. For testcase 2, Bob will take route 1 - 2 - 1 - 2 and its length is 3
     
    才讲的K短路,第二天多校就考到这个。=-=
     
    比较裸,直接用A*算法+Dij堆优化,不加堆优化的Dij会超时的,而且这个题数据边的w值会很大,所以所有的边的变量,中间累加的变量,数组存下的长度,最后的A*函数返回结果(一开始WA了很多次,就在这里,返回值也要long long,只顾改了变量了,白白WA了几发)都要设置成long long,第二个就是无向边了,建图和反向建图的两个数组都要push两次。这也是一开始反向建图少一个就WA。
     
    #include <iostream>
    #include <algorithm>
    #include <vector>
    #include <cstring>
    #include <queue>
    #include <cstdio>
    #define MAXN 100010
    #define INF (1LL<<62)
    using namespace std;
    typedef long long ll;
    typedef pair<int, ll> P;
    int N, M, S, T, K;
    ll dist[MAXN];
    ll tdist[MAXN];
    int cnt[MAXN];
    bool f[MAXN];
    vector<P> Adj[MAXN];
    vector<P> Rev[MAXN];
    struct Edge {
        int to;
        ll len;
        Edge(){}
        Edge(int t, ll l):to(t), len(l){}
    };
    priority_queue<Edge> q;
    
    bool operator<(const Edge &a, const Edge &b) {
        return (a.len + dist[a.to]) > (b.len + dist[b.to]);
    }
    
    void dijkstra() {
        memset(dist, 0, sizeof(dist));
        fill(tdist, tdist+MAXN, INF);
        tdist[T] = 0;
        while(!q.empty()) q.pop();
        q.push(Edge(T, 0));
        while (!q.empty()) {
            int x = q.top().to;
            ll d = q.top().len;
            q.pop();
            if (tdist[x] < d) continue;
            for (int i = 0; i < Rev[x].size(); i++) {
                int y = Rev[x][i].first;
                ll len = Rev[x][i].second;
                if (d+ len < tdist[y]) {
                    tdist[y] = d + len;
                    q.push(Edge(y, tdist[y]));
                }
            }
        }
        for (int i = 1; i <= N; i++){
            dist[i] = tdist[i];
        }
    }
    
    //注意这里是long long的返回结果啊!
    ll aStar() {
        if (dist[S] == INF) return -1;
        while (!q.empty()) q.pop();
        q.push(Edge(S, 0));
        memset(cnt, 0, sizeof(cnt));
        while (!q.empty()) {
            int x = q.top().to;
            ll d = q.top().len;
            q.pop();
            cnt[x]++;
            if (cnt[T] == K) return d;
            if (cnt[x] > K) continue;
            for (int i = 0; i < Adj[x].size(); i++) {
                int y = Adj[x][i].first;
                ll len = Adj[x][i].second;
                q.push(Edge(y, d+len));
            }
        }
    
        return -1;
    }
    
    int main() {
    //    freopen("in.txt","r",stdin);
        std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
        int tt;
        cin>>tt;
        while(tt--) {
        //初始化,忘了就WA
        for(int i = 0; i <= N; i++) {
            Adj[i].clear();
            Rev[i].clear();
        }
        int a, b;
        ll t;
        cin >> N >> M;
        for (int i = 0; i < M; i++) {
            cin >> a >> b >> t;
            Adj[a].push_back(make_pair(b, t));
            Adj[b].push_back(make_pair(a, t));
            Rev[b].push_back(make_pair(a, t));
            Rev[a].push_back(make_pair(b, t));
        }
        S = 1;
        T = N;
        K = 2;
    //    cin >> S >> T >> K;
        
        if (S == T) K++;
    
        dijkstra();
        cout << aStar() << endl;
        }
        return 0;
    }
    次短路做法,用的别人模版:
     
    原理就是在存dis最短路的时候同时用另外一个数组存次短路,在最短路交换边和dis[]值得时候,次短路存下新交换的没最短边长的值即可。
    #include<cstdio>
    #include<cstring>
    #include<queue>
    #include<functional>
    #include<vector>
    #include<algorithm>
    using namespace std;
    typedef long long int ll;
    #define MAXM  350010
    #define MAXN 250010
    #define INF 1223372036854775807
    typedef pair<ll,int> pp;
    
    typedef struct node
    {
        int v;
        ll w;
        node(int tv=0,ll tw=0):
            v(tv),w(tw){};
    }node;
    
    int n,m;
    vector<node> edge[MAXM];
    ll dis[MAXN],dis2[MAXN];   //dis[i]表示最短路,dis2[i]表示次短路
    
    
    void solve()
    {
        fill(dis+1,dis+n+1,INF);
        fill(dis2+1,dis2+n+1,INF);
    
    
        priority_queue<pp, vector<pp>, greater<pp> > q;  //用优先队列加速搜索
        dis[1]=0;
        q.push(pp(dis[1],1));   //second是该边指向(虽然是无向的)的顶点,first是这条边的权值
        while(q.size())
        {
            pp p=q.top(); q.pop();
            int v=p.second;
            ll d=p.first;
            if(dis2[v]<d) continue;  //如果当前取出的值不是到v的最短路或次短路就contniue,因为v->e的最短边和次短边一定是由->v的最短边和次短边+edge(v,e)得到
            for(int i=0;i<edge[v].size();i++)
            {
                int e=edge[v][i].v;
                ll d2=d+edge[v][i].w;
                if(dis[e]>d2)
                {
                    swap(dis[e],d2);
                    q.push(pp(dis[e],e));
                }
                if(dis2[e]>d2&&d2>dis[v])  //d2>dis[v]防止d2小于dis[v],这样v->e就变成负权边了,但可有可无
                {
                    dis2[e]=d2;
                    q.push(pp(dis2[e],e));
                }
            }
        }
        printf("%lld
    ",dis2[n]);
    
        
    }
    
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d%d",&n,&m);
            for(int i=1;i<=n;i++) edge[i].clear();
            for(int i=0;i<m;i++)
            {
                int a,b;
                ll c;
                scanf("%d%d%lld",&a,&b,&c);
                edge[a].push_back(node(b,c));
                edge[b].push_back(node(a,c));
            }
            solve();
        }
    }
     另个版本,这个版本INF一定要long long 才能过,为什么啊??
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <queue>
    #define INF (1LL<<62)
    using namespace std;
    typedef long long ll;
    typedef pair<ll,int> P;
    struct edge{
        int to;
        ll v;
        edge(int to,ll v):to(to),v(v){}
        edge(){}
    };
    const int maxn = 100010;
    const int maxe = 100010;
    int V,E;
    vector<edge> g[maxn];
    ll d[maxn],d2[maxn];//最短距离和次短距离
    void dijkstra(int s)
    {
        priority_queue<P,vector<P>,greater<P> > pq;
        for(int i=1;i<=V;i++)
        {
            d[i]=INF;
            d2[i]=INF;
        }
        d[s]=0;
        pq.push(P(0,s));
        while(pq.size())
        {
            P nowe=pq.top();pq.pop();
            if(nowe.first>d2[nowe.second]) continue;  //如果这个距离比当前次短路长continue
            for(int v=0;v<(int)g[nowe.second].size();v++)
            {
                edge nexte=g[nowe.second][v];
                ll dis=nowe.first+nexte.v;
                if(d[nexte.to]>dis)
                {
                    swap(dis,d[nexte.to]);
                    pq.push(P(d[nexte.to],nexte.to));
                }
                if(d2[nexte.to]>dis&&d[nexte.to]<dis)//保证最短路是小于这个次短路的
                {
                    d2[nexte.to]=dis;
                    pq.push(P(d2[nexte.to],nexte.to));//次短路的点进入pq
                }
            }
        }
    }
    int main()
    {
    //    freopen("in.txt","r",stdin);
        int TT;
        scanf("%d",&TT);
        while(TT--) {
        int s;//起点
        scanf("%d%d",&V,&E);
        {
            for(int i=1;i<=V;i++)
                g[i].clear();
            for(int i=1;i<=E;i++)
            {
                int f,t;
                ll v;
                scanf("%d%d%I64d",&f,&t,&v);
                g[f].push_back(edge(t,v));
                g[t].push_back(edge(f,v));
            }
            s=1;//这题默认起点为1
            dijkstra(s);
            printf("%I64d
    ",d2[V]);
        }
        }
        return 0;
    }
  • 相关阅读:
    想你了
    新华都总裁兼CEO唐骏演讲
    中国99%的白领以及他们的家庭即将面临破产
    你的英语水平就可以达到跟美国人交流的水平啦
    经验语录
    荒谬的加息传言
    人生格言
    不要为油荒找借口
    房地产调控失利 三次调控势不可免
    假设你的月收入2000元,你应该这样用
  • 原文地址:https://www.cnblogs.com/zhangmingzhao/p/7429372.html
Copyright © 2020-2023  润新知