题意:
n位数,有b组,从每一组中选取一位数,依次组成一个b位数,计算有多少种选法可以满足结果%x=k
题解:
推导出转移方程后用矩阵加速,这里构造矩阵的思路学习一位巨佬的写法,还是要多练练矩阵!
/* *author: zlc *zucc_acm_lab *just do it */ #include<bits/stdc++.h> using namespace std; typedef long long ll; const double pi=acos(-1.0); const double eps=1e-6; const int mod=1e9+7; const int inf=1e9; const int maxn=2e5+100; inline ll read () {ll x=0,f=1;char ch=getchar();while (ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=getchar();}while (ch>='0'&&ch<='9') {x=x*10+ch-'0';ch=getchar();}return x*f;} ll qpow (ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;} ll n,x,k,b; struct matrix { ll m[105][105]; }ans,base; void init () { memset(ans.m,0,sizeof(ans.m)); memset(base.m,0,sizeof(base.m)); for (int i=0;i<x;i++) ans.m[i][i]=1; } matrix mul (matrix a,matrix b) { matrix wjm; memset(wjm.m,0,sizeof(wjm.m)); for (int i=0;i<x;i++) for (int j=0;j<x;j++) { wjm.m[i][j]=0; for (int k=0;k<x;k++) wjm.m[i][j]=(wjm.m[i][j]+a.m[i][k]*b.m[k][j]%mod)%mod; } return wjm; } void qpow (ll p) { while (p) { if (p&1) ans=mul(ans,base); base=mul(base,base); p>>=1; } } int cnt[maxn]; int main () { n=read(),b=read(),k=read(),x=read(); for (int i=0;i<n;i++) { ll tt; tt=read(); cnt[tt]++; } init(); for (int i=0;i<x;i++) for (int j=0;j<=9;j++) { base.m[i][(i*10+j)%x]=(base.m[i][(i*10+j)%x]+cnt[j])%mod;//dp[i][j]表示从余数i到余数j的方法数 } qpow(b); printf("%lld ",ans.m[0][k]); }