• Hashtable、ConcurrentHashMap源码分析


    Hashtable、ConcurrentHashMap源码分析

      为什么把这两个数据结构对比分析呢,相信大家都明白。首先二者都是线程安全的,但是二者保证线程安全的方式却是不同的。废话不多说了,从源码的角度分析一下两者的异同,首先给出二者的继承关系图。

     Hashtable类属性和方法源码分析

      我们还是先给出一张Hashtable类的属性和方法图,其中Entry<K,V>是Hashtable类的静态内部类,该类继承自Map.Entry<K,V>接口。如下将会详细讲解Hashtable类中属性和方法的含义。

    • 属性
    1. Entry<?,?>[] table :Entry类型的数组,用于存储Hashtable中的键值对;
    2. int count :存储hashtable中有多少个键值对
    3. int threshold :当count值大于该值是,哈希表扩大容量,进行rehash()
    4. float loadFactor :threshold=哈希表的初始大小*loadFactor,初始容量默认为11,loadFactor值默认为0.75
    5. int modCount :实现"fail-fast"机制,在并发集合中对Hashtable进行迭代操作时,若其他线程对Hashtable进行结构性的修改,迭代器会通过比较expectedModCount和modCount是否一致,如果不一致则抛出ConcurrentModificationException异常。如下通过一个抛出ConcurrentModificationException异常的例子说明。
      public static void main(String[] args) {
               Hashtable<Integer, String> tb = new Hashtable<Integer,String>();
               tb.put(1, "BUPT");
               tb.put(2, "PKU");
               tb.put(3, "THU");
               Iterator<Entry<Integer, String>> iter = tb.entrySet().iterator();
               while(iter.hasNext()){
                   Entry<?, ?> entry = (Entry<?, ?>) iter.next(); //此处会抛出异常
                   System.out.println(entry.getValue());
                   if("THU".equals(entry.getValue())){
                       tb.remove(entry.getKey());
                   }
               }
          }
      /* 输出结果如下:
      THU
      Exception in thread "main" java.util.ConcurrentModificationException
          at java.util.Hashtable$Enumerator.next(Hashtable.java:1367)
          at ali.Main.main(Main.java:16) */
      ConcurrentModificationException异常

      Hashtable的remove(Object key)方法见如下方法5,每一次修改hashtable中的数据都更新modCount的值。Hashtable内部类Enumerator<T>的相关部分代码如下:

          private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
              Entry<?,?>[] table = Hashtable.this.table;
              int index = table.length;
              Entry<?,?> entry;
              Entry<?,?> lastReturned;
              int type;
      
              /**
               * Indicates whether this Enumerator is serving as an Iterator
               * or an Enumeration.  (true -> Iterator).
               */
              boolean iterator;
      
              /**
               * 遍历之初将hashtable修改的次数赋值给expectedModCount
               */
              protected int expectedModCount = modCount;
      
              Enumerator(int type, boolean iterator) {
                  this.type = type;
                  this.iterator = iterator;
              }
              //
              public boolean hasMoreElements() {
                  Entry<?,?> e = entry;
                  int i = index;
                  Entry<?,?>[] t = table;
                  /* Use locals for faster loop iteration */
                  while (e == null && i > 0) {
                      e = t[--i];
                  }
                  entry = e;
                  index = i;
                  return e != null;
              }
      
              @SuppressWarnings("unchecked")
              public T nextElement() {
                  Entry<?,?> et = entry;
                  int i = index;
                  Entry<?,?>[] t = table;
                  /* Use locals for faster loop iteration */
                  while (et == null && i > 0) {
                      et = t[--i];
                  }
                  entry = et;
                  index = i;
                  if (et != null) {
                      Entry<?,?> e = lastReturned = entry;
                      entry = e.next;
                      return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
                  }
                  throw new NoSuchElementException("Hashtable Enumerator");
              }
      
              //查看是否还有下一个元素
              public boolean hasNext() {
                  return hasMoreElements();
              }
      
              public T next() {
                  //首先判断modCount和expectedModCount是否相等
                  //由于在主程序中Hashtable对象通过tb.remove()方法修改了modCount的值,使得expectedModCount和modCount不相等而抛出异常
                  //解决办法就是将tb.remove()方法替换为iter.remove()方法
                  if (modCount != expectedModCount)
                      throw new ConcurrentModificationException();
                  return nextElement();
              }
              //该方法在remove元素的同时修改了modCount和expectedModCount的值
              public void remove() {
                  if (!iterator)
                      throw new UnsupportedOperationException();
                  if (lastReturned == null)
                      throw new IllegalStateException("Hashtable Enumerator");
                  if (modCount != expectedModCount)
                      throw new ConcurrentModificationException();
      
                  synchronized(Hashtable.this) {
                      Entry<?,?>[] tab = Hashtable.this.table;
                      int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length;
      
                      @SuppressWarnings("unchecked")
                      Entry<K,V> e = (Entry<K,V>)tab[index];
                      for(Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
                          if (e == lastReturned) {
                              modCount++;
                              expectedModCount++;
                              if (prev == null)
                                  tab[index] = e.next;
                              else
                                  prev.next = e.next;
                              count--;
                              lastReturned = null;
                              return;
                          }
                      }
                      throw new ConcurrentModificationException();
                  }
              }
          }
      Enumerator类
    • 方法
    1. contains(Object value),该方法是判断该hashtable中是否含有值为value的键值对,执行该方法需要加锁(synchronized)。hashtable中不允许存储空的value,所以当查找value为空时,直接抛出空指针异常。接下来是两个for循环遍历table。由如上的Entry实体类中的属性可以看出,next属性是指向与该实体拥有相同hashcode的下一个实体。
    2. containsKey(Object key),该方法是判断该hashtable中是否含有键为key的键值对,执行该方法也需要对整张table加锁(synchronized)。首先根据当前给出的key值计算hashcode,并有hashcode值计算该key所在table数组中的下标,依次遍历该下标中的每一个Entry对象e。由于不同的hashcode映射到数组中下标的位置可能相同,因此首先判断e的hashcode值和所查询key的hashcode值是否相同,如果相同在判断key是否相等。
    3. get(Object key),获取当前键key所对应的value值,本方法和containsKey(Object key)方法除了返回值其它都相同,如果能找到该key对应的value,则返回value的值,如果不能则返回null。

    4.  put(K key, V value),将该键值对加入table中。首先插入的value不能为空。其次如果当前插入的key值已经在table中存在,则用新的value替换掉原来的value值,并将原来的value值作为该方法的返回值返回。如果当前插入的key不在table中,则将该键值对插入。

      插入的方法首先判断当前table中的值是否大于阈值(threshold),如果大于该阈值,首先对该表扩容,再将新的键值对插入table[index]的链表的第一个Entry的位置上。

    5. remove(Object key),将键为key的Entry从table表中移除。同样该方法也需要锁定整个table表。如果该table中存在该键,则返回删除的key的value值,如果当前table中不存在该key,则该方法的返回值为null。
    6. replace(K key, V value),将键为key的Entry对象值更新为value,并将原来的value最为该方法的返回值。

    ConcurrentHashMap类属性和方法源码分析

      ConcurrentHashMap在JDK1.8中改动还是挺大的。它摒弃了Segment(段锁)的概念,在实现上采用了CAS算法。底层使用数组+链表+红黑树的方式,但是为了做到并发,同时也增加了大量的辅助类。如下是ConcurrentHashMap的类图。

    • 属性
    //ConcurrentHashMap最大容量
    private static final int MAXIMUM_CAPACITY = 1 << 30;
    
    //ConcurrentHashMap初始默认容量
    private static final int DEFAULT_CAPACITY = 16;
    
    //最大table数组的大小
    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    
    //默认并行级别,主体代码并未使用
    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
    
    //加载因子,默认为0.75
    private static final float LOAD_FACTOR = 0.75f;
    
    //当hash桶中hash冲突的数目大于此值时,将链表转化为红黑树,加快hash的查找速度
    static final int TREEIFY_THRESHOLD = 8;
    
    //当hash桶中hash冲突小于等于此值时,会把红黑树转化为链表
    static final int UNTREEIFY_THRESHOLD = 6;
    
    //当table数组的长度大于该值时,同时满足hash桶中hash冲突大于TREEIFY_THRESHOLD时,才会把链表转化为红黑树
    static final int MIN_TREEIFY_CAPACITY = 64;
    
    //扩容操作中,transfer()方法允许多线程,该值表示一个线程执行transfer时,至少对连续的多少个hash桶进行transfer
    private static final int MIN_TRANSFER_STRIDE = 16;
    
    //ForwardingNode的hash值,ForwardingNode是一种临时节点,在扩容中才会出现,不存储实际的数据
    static final int MOVED     = -1;
    
    //TreeBin的hash值,TreeBin是用于代理TreeNode的特殊节点,存储红黑树的根节点
    static final int TREEBIN   = -2;
    
    //用于和负数hash进行&运算,将其转化为正数
    static final int HASH_BITS = 0x7fffffff;
    •  基本类
    1. Node<K,V>:基本结点/普通节点。当table中的Entry以链表形式存储时才使用,存储实际数据。此类不会在ConcurrentHashMap以外被修改,而且该类的key和value永远不为null(其子类可为null,随后会介绍)。
      static class Node<K,V> implements Map.Entry<K,V> {
              final int hash;
              final K key;
              volatile V val;
              volatile Node<K,V> next;
      
              Node(int hash, K key, V val, Node<K,V> next) {
                  this.hash = hash;
                  this.key = key;
                  this.val = val;
                  this.next = next;
              }
      
              public final K getKey()       { return key; }
              public final V getValue()     { return val; }
              public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
              public final String toString(){ return key + "=" + val; }
              //不支持直接设置value的值
              public final V setValue(V value) {
                  throw new UnsupportedOperationException();
              }
      
              public final boolean equals(Object o) {
                  Object k, v, u; Map.Entry<?,?> e;
                  return ((o instanceof Map.Entry) &&
                          (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
                          (v = e.getValue()) != null &&
                          (k == key || k.equals(key)) &&
                          (v == (u = val) || v.equals(u)));
              }
      
             //从当前节点查找对应的键为k的Node<K,V>
              Node<K,V> find(int h, Object k) {
                  Node<K,V> e = this;
                  if (k != null) {
                      do {
                          K ek;
                          if (e.hash == h &&
                              ((ek = e.key) == k || (ek != null && k.equals(ek))))
                              return e;
                      } while ((e = e.next) != null);
                  }
                  return null;
              }
          }
      Node<K,V>
    2. TreeNode:红黑树结点。当table中的Entry以红黑树的形式存储时才会使用,存储实际数据。ConcurrentHashMap中对TreeNode结点的操作都会由TreeBin代理执行。当满足条件时hash会由链表变为红黑树,但是TreeNode中通过属性prev依然保留链表的指针。
      static final class TreeNode<K,V> extends Node<K,V> {
              TreeNode<K,V> parent;  // red-black tree links
              TreeNode<K,V> left;
              TreeNode<K,V> right;
              //当前节点的前一个结点,从而方便删除
              TreeNode<K,V> prev;    // needed to unlink next upon deletion
              boolean red;
      
              TreeNode(int hash, K key, V val, Node<K,V> next,
                       TreeNode<K,V> parent) {
                  super(hash, key, val, next);
                  this.parent = parent;
              }
      
              Node<K,V> find(int h, Object k) {
                  return findTreeNode(h, k, null);
              }
      
              //查找hashcode为h,key为k的TreeNode结点
              final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
                  if (k != null) {
                      TreeNode<K,V> p = this;
                      do  {
                          int ph, dir; K pk; TreeNode<K,V> q;
                          TreeNode<K,V> pl = p.left, pr = p.right;
                          if ((ph = p.hash) > h)
                              p = pl;
                          else if (ph < h)
                              p = pr;
                          else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
                              return p;
                          else if (pl == null)
                              p = pr;
                          else if (pr == null)
                              p = pl;
                          else if ((kc != null ||
                                    (kc = comparableClassFor(k)) != null) &&
                                   (dir = compareComparables(kc, k, pk)) != 0)
                              p = (dir < 0) ? pl : pr;
                          else if ((q = pr.findTreeNode(h, k, kc)) != null)
                              return q;
                          else
                              p = pl;
                      } while (p != null);
                  }
                  return null;
              }
          }
      TreeNode<K,V>
    3. ForwardingNode:转发结点。该节点是一种临时结点,只有在扩容进行中才会出现,其为Node的子类,该节点的hash值固定为-1,并且他不存储实际数据。如果旧table的一个hash桶中全部结点都迁移到新的数组中,旧table就在桶中放置一个ForwardingNode。当读操作或者迭代操作遇到ForwardingNode时,将操作转发到扩容后新的table数组中去执行,当写操作遇见ForwardingNode时,则尝试帮助扩容。
      static final class ForwardingNode<K,V> extends Node<K,V> {
              final Node<K,V>[] nextTable;
              //构造函数指定hash值为MOVED,key=null, value=null, next=null
              ForwardingNode(Node<K,V>[] tab) {
                  super(MOVED, null, null, null);
                  this.nextTable = tab;
              }
      
              Node<K,V> find(int h, Object k) {
                  //for循环避免多次遇见ForwardingNode导致递归过深
                  outer: for (Node<K,V>[] tab = nextTable;;) {
                      Node<K,V> e; int n;
                      if (k == null || tab == null || (n = tab.length) == 0 ||
                          (e = tabAt(tab, (n - 1) & h)) == null)
                          return null;
                      for (;;) {
                          int eh; K ek;
                          if ((eh = e.hash) == h &&
                              ((ek = e.key) == k || (ek != null && k.equals(ek))))
                              return e;
                          if (eh < 0) {
                              //如果遇见ForwardingNode结点,则遍历ForwardingNode的nextTable结点
                              if (e instanceof ForwardingNode) {
                                  tab = ((ForwardingNode<K,V>)e).nextTable;
                                  continue outer;
                              }
                              else
                                  return e.find(h, k);
                          }
                          if ((e = e.next) == null)
                              return null;
                      }
                  }
              }
          }
      ForwardingNode<K,V>

      补充图一张说明扩容下是如何遍历结点的。

    4. TreeBin:代理操作TreeNode结点。该节点的hash值固定为-2,存储实际数据的红黑树的根节点。因为红黑树进行写入操作整个树的结构可能发生很大变化,会影响到读线程。因此TreeBin需要维护一个简单的读写锁,不用考虑写-写竞争的情况。当然并不是全部的写操作都需要加写锁,只有部分put/remove需要加写锁。
      static final class TreeBin<K,V> extends Node<K,V> {
              TreeNode<K,V> root;     //红黑树的根节点
              volatile TreeNode<K,V> first;    //链表的头结点
              volatile Thread waiter;    //最近一个设置waiter标志位的线程
              volatile int lockState;    //全局的锁状态
              // values for lockState
              static final int WRITER = 1; // set while holding write lock   写锁状态
              static final int WAITER = 2; // set when waiting for write lock  等待获取写锁的状态
              static final int READER = 4; // increment value for setting read lock  读锁状态,读锁可以叠加,即红黑树可以并发读,每增加一个读线程lockState的值加READER
      
              /**
               * 红黑树的读锁状态和写锁状态是互斥的,但是读写操作实际上可以是不互斥的
               * 红黑树的读写状态互斥是指以红黑树的方式进行读写操作时互斥的
               * 当线程持有红黑树的写锁时,读线程不能以红黑树的方式进行读取操作,但可以用简单链表的方式读取,从而实现了读写操作的并发执行
               * 当有线程持有红黑树的读锁时,写线程会阻塞,但是红黑树查找速度快,因此写线程阻塞时间短。
               * put/remove/replace方法会锁住TreeBin节点,因此不会出现写-写竞争。
               */
              //当hashCode相等且不是Comparable类时使用此方法判断大小
              static int tieBreakOrder(Object a, Object b) {
                  int d;
                  if (a == null || b == null ||
                      (d = a.getClass().getName().
                       compareTo(b.getClass().getName())) == 0)
                      d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                           -1 : 1);
                  return d;
              }
      
             //以b为头节点的链表创建红黑树
              TreeBin(TreeNode<K,V> b) {
                  super(TREEBIN, null, null, null);
                  this.first = b;
                  TreeNode<K,V> r = null;
                  for (TreeNode<K,V> x = b, next; x != null; x = next) {
                      next = (TreeNode<K,V>)x.next;
                      x.left = x.right = null;
                      if (r == null) {
                          x.parent = null;
                          x.red = false;
                          r = x;
                      }
                      else {
                          K k = x.key;
                          int h = x.hash;
                          Class<?> kc = null;
                          for (TreeNode<K,V> p = r;;) {
                              int dir, ph;
                              K pk = p.key;
                              if ((ph = p.hash) > h)
                                  dir = -1;
                              else if (ph < h)
                                  dir = 1;
                              else if ((kc == null &&
                                        (kc = comparableClassFor(k)) == null) ||
                                       (dir = compareComparables(kc, k, pk)) == 0)
                                  dir = tieBreakOrder(k, pk);
                                  TreeNode<K,V> xp = p;
                              if ((p = (dir <= 0) ? p.left : p.right) == null) {
                                  x.parent = xp;
                                  if (dir <= 0)
                                      xp.left = x;
                                  else
                                      xp.right = x;
                                  r = balanceInsertion(r, x);
                                  break;
                              }
                          }
                      }
                  }
                  this.root = r;
                  assert checkInvariants(root);
              }
      
              /**
               * 红黑树重构时西药对根节点加写锁
               */
              private final void lockRoot() {
                  //尝试获取一次锁
                  if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
                      contendedLock(); //直到获取到写锁,该方法才返回
              }
      
              /**
               * 释放写锁
               */
              private final void unlockRoot() {
                  lockState = 0;
              }
      
              /**
               * 阻塞写线程,当写线程获取写锁时返回
               *因为ConcurrentHashMap的put/remove/replace方法会对TreeBin加锁,因此不会出现写-写竞争
               *因此该方法只用考虑读锁线程阻碍线程获取写锁,而不用考虑写锁线程阻碍线程获取写锁,不用考虑写-写竞争
               */
              private final void contendedLock() {
                  boolean waiting = false;
                  for (int s;;) {
                      //~WAITER表示反转WAITER,当没哟线程持有读锁时,该条件为true
                      if (((s = lockState) & ~WAITER) == 0) {
                          if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
                              //没有任何线程持有读写锁时,尝试让当前线程获取写锁,同时清空waiter标识位
                              if (waiting)
                                  waiter = null;
                              return;
                          }
                      }
                      else if ((s & WAITER) == 0) {   //当前线程持有读锁,并且当前线程不是WAITER状态时,该条件为true
                          if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {   //尝试占据WAITER标识位
                              waiting = true;    //表明自己处于waiter状态
                              waiter = Thread.currentThread();
                          }
                      }
                      else if (waiting)  //当前线程持有读锁,并且当前线程处于waiter状态时,该条件为true
                          LockSupport.park(this);  //阻塞自己
                  }
              }
      
              /**
               * 从根节点开始查找,找不到返回null
               * 当有写线程加上写锁时,使用链表方式进行查找
               */
              final Node<K,V> find(int h, Object k) {
                  if (k != null) {
                      for (Node<K,V> e = first; e != null; ) {
                          int s; K ek;
                          //两种特殊情况下以链表的方式进行查找
                          //1、有线程正持有 写锁,这样做能够不阻塞读线程
                          //2、WAITER时,不再继续加 读锁,能够让已经被阻塞的写线程尽快恢复运行,或者刚好让某个写线程不被阻塞
                          if (((s = lockState) & (WAITER|WRITER)) != 0) {
                              if (e.hash == h &&
                                  ((ek = e.key) == k || (ek != null && k.equals(ek))))
                                  return e;
                              e = e.next;
                          }
                          // 读线程数量加1,读状态进行累加
                          else if (U.compareAndSwapInt(this, LOCKSTATE, s,
                                                       s + READER)) {  
                              TreeNode<K,V> r, p;
                              try {
                                  p = ((r = root) == null ? null :
                                       r.findTreeNode(h, k, null));
                              } finally {
                                  Thread w;
                                  // 如果这是最后一个读线程,并且有写线程因为 读锁 而阻塞,那么要通知它,告诉它可以尝试获取写锁了
                                  if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
                                      (READER|WAITER) && (w = waiter) != null)
                                      LockSupport.unpark(w);  // 让被阻塞的写线程运行起来,重新去尝试获取写锁
                              }
                              return p;
                          }
                      }
                  }
                  return null;
              }
      
              /**
               *在ConcurrentHashMap的putVal方法如果hash桶为红黑树时调用
               */
              final TreeNode<K,V> putTreeVal(int h, K k, V v) {
                  Class<?> kc = null;
                  boolean searched = false;
                  for (TreeNode<K,V> p = root;;) {
                      int dir, ph; K pk;
                      if (p == null) {
                          first = root = new TreeNode<K,V>(h, k, v, null, null);
                          break;
                      }
                      else if ((ph = p.hash) > h)
                          dir = -1;
                      else if (ph < h)
                          dir = 1;
                      else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
                          return p;
                      else if ((kc == null &&
                                (kc = comparableClassFor(k)) == null) ||
                               (dir = compareComparables(kc, k, pk)) == 0) {
                          if (!searched) {
                              TreeNode<K,V> q, ch;
                              searched = true;
                              if (((ch = p.left) != null &&
                                   (q = ch.findTreeNode(h, k, kc)) != null) ||
                                  ((ch = p.right) != null &&
                                   (q = ch.findTreeNode(h, k, kc)) != null))
                                  return q;
                          }
                          dir = tieBreakOrder(k, pk);
                      }
      
                      TreeNode<K,V> xp = p;
                      if ((p = (dir <= 0) ? p.left : p.right) == null) {
                          TreeNode<K,V> x, f = first;
                          first = x = new TreeNode<K,V>(h, k, v, f, xp);
                          if (f != null)
                              f.prev = x;
                          if (dir <= 0)
                              xp.left = x;
                          else
                              xp.right = x;
                          if (!xp.red)
                              x.red = true;
                          else {
                              lockRoot();
                              try {
                                  root = balanceInsertion(root, x);
                              } finally {
                                  unlockRoot();
                              }
                          }
                          break;
                      }
                  }
                  assert checkInvariants(root);
                  return null;
              }
      
              /**
               * 从链表和红黑树上都删除结点
               * 两点区别:1、返回值,红黑树的规模太小时,返回true,调用者再去进行树->链表的转化;
               * 2、红黑树规模足够,不用变换成链表时,进行红黑树上的删除要加 写锁
               */
              final boolean removeTreeNode(TreeNode<K,V> p) {
                  TreeNode<K,V> next = (TreeNode<K,V>)p.next;
                  TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
                  TreeNode<K,V> r, rl;
                  if (pred == null)
                      first = next;
                  else
                      pred.next = next;
                  if (next != null)
                      next.prev = pred;
                  if (first == null) {
                      root = null;
                      return true;
                  }
                  if ((r = root) == null || r.right == null || // too small
                      (rl = r.left) == null || rl.left == null)
                      return true;
                  lockRoot();
                  try {
                      TreeNode<K,V> replacement;
                      TreeNode<K,V> pl = p.left;
                      TreeNode<K,V> pr = p.right;
                      if (pl != null && pr != null) {
                          TreeNode<K,V> s = pr, sl;
                          while ((sl = s.left) != null) // find successor
                              s = sl;
                          boolean c = s.red; s.red = p.red; p.red = c; // swap colors
                          TreeNode<K,V> sr = s.right;
                          TreeNode<K,V> pp = p.parent;
                          if (s == pr) { // p was s's direct parent
                              p.parent = s;
                              s.right = p;
                          }
                          else {
                              TreeNode<K,V> sp = s.parent;
                              if ((p.parent = sp) != null) {
                                  if (s == sp.left)
                                      sp.left = p;
                                  else
                                      sp.right = p;
                              }
                              if ((s.right = pr) != null)
                                  pr.parent = s;
                          }
                          p.left = null;
                          if ((p.right = sr) != null)
                              sr.parent = p;
                          if ((s.left = pl) != null)
                              pl.parent = s;
                          if ((s.parent = pp) == null)
                              r = s;
                          else if (p == pp.left)
                              pp.left = s;
                          else
                              pp.right = s;
                          if (sr != null)
                              replacement = sr;
                          else
                              replacement = p;
                      }
                      else if (pl != null)
                          replacement = pl;
                      else if (pr != null)
                          replacement = pr;
                      else
                          replacement = p;
                      if (replacement != p) {
                          TreeNode<K,V> pp = replacement.parent = p.parent;
                          if (pp == null)
                              r = replacement;
                          else if (p == pp.left)
                              pp.left = replacement;
                          else
                              pp.right = replacement;
                          p.left = p.right = p.parent = null;
                      }
      
                      root = (p.red) ? r : balanceDeletion(r, replacement);
      
                      if (p == replacement) {  // detach pointers
                          TreeNode<K,V> pp;
                          if ((pp = p.parent) != null) {
                              if (p == pp.left)
                                  pp.left = null;
                              else if (p == pp.right)
                                  pp.right = null;
                              p.parent = null;
                          }
                      }
                  } finally {
                      unlockRoot();
                  }
                  assert checkInvariants(root);
                  return false;
              }
      
              /* ------------------------------------------------------------ */
              // 如下是红黑树的经典算法
      
              static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
                                                    TreeNode<K,V> p) {
                  TreeNode<K,V> r, pp, rl;
                  if (p != null && (r = p.right) != null) {
                      if ((rl = p.right = r.left) != null)
                          rl.parent = p;
                      if ((pp = r.parent = p.parent) == null)
                          (root = r).red = false;
                      else if (pp.left == p)
                          pp.left = r;
                      else
                          pp.right = r;
                      r.left = p;
                      p.parent = r;
                  }
                  return root;
              }
      
              static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
                                                     TreeNode<K,V> p) {
                  TreeNode<K,V> l, pp, lr;
                  if (p != null && (l = p.left) != null) {
                      if ((lr = p.left = l.right) != null)
                          lr.parent = p;
                      if ((pp = l.parent = p.parent) == null)
                          (root = l).red = false;
                      else if (pp.right == p)
                          pp.right = l;
                      else
                          pp.left = l;
                      l.right = p;
                      p.parent = l;
                  }
                  return root;
              }
      
              static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
                                                          TreeNode<K,V> x) {
                  x.red = true;
                  for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
                      if ((xp = x.parent) == null) {
                          x.red = false;
                          return x;
                      }
                      else if (!xp.red || (xpp = xp.parent) == null)
                          return root;
                      if (xp == (xppl = xpp.left)) {
                          if ((xppr = xpp.right) != null && xppr.red) {
                              xppr.red = false;
                              xp.red = false;
                              xpp.red = true;
                              x = xpp;
                          }
                          else {
                              if (x == xp.right) {
                                  root = rotateLeft(root, x = xp);
                                  xpp = (xp = x.parent) == null ? null : xp.parent;
                              }
                              if (xp != null) {
                                  xp.red = false;
                                  if (xpp != null) {
                                      xpp.red = true;
                                      root = rotateRight(root, xpp);
                                  }
                              }
                          }
                      }
                      else {
                          if (xppl != null && xppl.red) {
                              xppl.red = false;
                              xp.red = false;
                              xpp.red = true;
                              x = xpp;
                          }
                          else {
                              if (x == xp.left) {
                                  root = rotateRight(root, x = xp);
                                  xpp = (xp = x.parent) == null ? null : xp.parent;
                              }
                              if (xp != null) {
                                  xp.red = false;
                                  if (xpp != null) {
                                      xpp.red = true;
                                      root = rotateLeft(root, xpp);
                                  }
                              }
                          }
                      }
                  }
              }
      
              static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
                                                         TreeNode<K,V> x) {
                  for (TreeNode<K,V> xp, xpl, xpr;;)  {
                      if (x == null || x == root)
                          return root;
                      else if ((xp = x.parent) == null) {
                          x.red = false;
                          return x;
                      }
                      else if (x.red) {
                          x.red = false;
                          return root;
                      }
                      else if ((xpl = xp.left) == x) {
                          if ((xpr = xp.right) != null && xpr.red) {
                              xpr.red = false;
                              xp.red = true;
                              root = rotateLeft(root, xp);
                              xpr = (xp = x.parent) == null ? null : xp.right;
                          }
                          if (xpr == null)
                              x = xp;
                          else {
                              TreeNode<K,V> sl = xpr.left, sr = xpr.right;
                              if ((sr == null || !sr.red) &&
                                  (sl == null || !sl.red)) {
                                  xpr.red = true;
                                  x = xp;
                              }
                              else {
                                  if (sr == null || !sr.red) {
                                      if (sl != null)
                                          sl.red = false;
                                      xpr.red = true;
                                      root = rotateRight(root, xpr);
                                      xpr = (xp = x.parent) == null ?
                                          null : xp.right;
                                  }
                                  if (xpr != null) {
                                      xpr.red = (xp == null) ? false : xp.red;
                                      if ((sr = xpr.right) != null)
                                          sr.red = false;
                                  }
                                  if (xp != null) {
                                      xp.red = false;
                                      root = rotateLeft(root, xp);
                                  }
                                  x = root;
                              }
                          }
                      }
                      else { // symmetric
                          if (xpl != null && xpl.red) {
                              xpl.red = false;
                              xp.red = true;
                              root = rotateRight(root, xp);
                              xpl = (xp = x.parent) == null ? null : xp.left;
                          }
                          if (xpl == null)
                              x = xp;
                          else {
                              TreeNode<K,V> sl = xpl.left, sr = xpl.right;
                              if ((sl == null || !sl.red) &&
                                  (sr == null || !sr.red)) {
                                  xpl.red = true;
                                  x = xp;
                              }
                              else {
                                  if (sl == null || !sl.red) {
                                      if (sr != null)
                                          sr.red = false;
                                      xpl.red = true;
                                      root = rotateLeft(root, xpl);
                                      xpl = (xp = x.parent) == null ?
                                          null : xp.left;
                                  }
                                  if (xpl != null) {
                                      xpl.red = (xp == null) ? false : xp.red;
                                      if ((sl = xpl.left) != null)
                                          sl.red = false;
                                  }
                                  if (xp != null) {
                                      xp.red = false;
                                      root = rotateRight(root, xp);
                                  }
                                  x = root;
                              }
                          }
                      }
                  }
              }
      
              /**
               * 递归检查,确保构造的是正确无误的红黑树
               */
              static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
                  TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
                      tb = t.prev, tn = (TreeNode<K,V>)t.next;
                  if (tb != null && tb.next != t)
                      return false;
                  if (tn != null && tn.prev != t)
                      return false;
                  if (tp != null && t != tp.left && t != tp.right)
                      return false;
                  if (tl != null && (tl.parent != t || tl.hash > t.hash))
                      return false;
                  if (tr != null && (tr.parent != t || tr.hash < t.hash))
                      return false;
                  if (t.red && tl != null && tl.red && tr != null && tr.red)
                      return false;
                  if (tl != null && !checkInvariants(tl))
                      return false;
                  if (tr != null && !checkInvariants(tr))
                      return false;
                  return true;
              }
              // Unsafe相关的初始化工作
              private static final sun.misc.Unsafe U;
              private static final long LOCKSTATE;
              static {
                  try {
                      U = sun.misc.Unsafe.getUnsafe();
                      Class<?> k = TreeBin.class;
                      LOCKSTATE = U.objectFieldOffset
                          (k.getDeclaredField("lockState"));
                  } catch (Exception e) {
                      throw new Error(e);
                  }
              }
          }
      TreeBin<K,V>
    5. ReservationNode:保留结点,也被称为空节点。该节点的hash值固定为-3,不保存实际数据。正常的写操作都需要对hash桶的第一个节点进行加锁,如果hash桶的第一个节点为null时是无法加锁的,因此需要new一个ReservationNode节点,作为hash桶的第一个节点,对该节点进行加锁。
      static final class ReservationNode<K,V> extends Node<K,V> {
              ReservationNode() {
                  super(RESERVED, null, null, null);
              }
      
              Node<K,V> find(int h, Object k) {
                  return null;
              }
          }
      ReservationNode<K,V>
    • ConcurrentHashMap方法

      首先介绍一些基本的方法,这些方法不会直接用到,但却是理解ConcurrentHashMap常见方法前提,因为这些方法被ConcurrentHashMap常见的方法调用。然后在介绍完这些基本方法的基础上,再分析常见的containsValue、put、remove等常见方法。

    1. Node<K,V>[] initTable():初始化table的方法。初始化这个工作不是在构造函数中执行的,而是在put方法中执行,put方法中发现table为null时,调用该方法。
      private final Node<K,V>[] initTable() {
              Node<K,V>[] tab; int sc;
              while ((tab = table) == null || tab.length == 0) {
                  if ((sc = sizeCtl) < 0)
                      //真正的初始化是要禁止并发的,保证tables数组只被初始化一次,但又不能切换线程,所以需要yield()让出CPU
                      Thread.yield(); // lost initialization race; just spin
                  else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { //更新sizeCtl标识为初始化状态
                      try {
                          //如果当前表为空,初始化table表
                          if ((tab = table) == null || tab.length == 0) {
                              int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                              @SuppressWarnings("unchecked")
                              Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                              table = tab = nt;
                              sc = n - (n >>> 2);  //设置阈值为总长度的0.75,从而可看出loadFactor没有用到
                          }
                      } finally {
                          sizeCtl = sc;   //设置阈值
                      }
                      break;
                  }
              }
              return tab;
          }
      initTable方法
    2. 如下几个方法是用于读取table数组,使用Unsafe提供更强的功能代替普通的读写。
      //volatile读取table[i]
      static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
              return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
          }
      //CAS更新table[i],更新Node链表的头节点,或者TreeBin节点
      static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
                                              Node<K,V> c, Node<K,V> v) {
              return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
          }
      //volatile写入table[i]
      static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
              U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
          }
      //尝试将链表转化为红黑树
      private final void treeifyBin(Node<K,V>[] tab, int index) {
          Node<K,V> b; int n, sc;
          if (tab != null) {
              //当table的length小于64时,只进行一次扩容
              if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
                  tryPresize(n << 1);
              //将链表转化为红黑树
              else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
                  synchronized (b) {
                      if (tabAt(tab, index) == b) {
                          TreeNode<K,V> hd = null, tl = null;
                          for (Node<K,V> e = b; e != null; e = e.next) {
                              TreeNode<K,V> p =
                                  new TreeNode<K,V>(e.hash, e.key, e.val,
                                                        null, null);
                              if ((p.prev = tl) == null)
                                  hd = p;
                              else
                                  tl.next = p;
                              tl = p;
                          }
                          setTabAt(tab, index, new TreeBin<K,V>(hd));
                      }
                  }
              }
          }
      }
      //将红黑树转化为链表,在调用此方法时synchronized加锁,这里不再需要加锁
      static <K,V> Node<K,V> untreeify(Node<K,V> b) {
              Node<K,V> hd = null, tl = null;
              for (Node<K,V> q = b; q != null; q = q.next) {
                  Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
                  if (tl == null)
                      hd = p;
                  else
                      tl.next = p;
                  tl = p;
              }
              return hd;
      }
      View Code
    3. 扩容方法:扩容分为两个步骤:第一步新建一个2倍大小的数组(单线程完成),第二步是rehash,把旧数组中的数据重新计算hash值放入新数组中。ConcurrentHashMap在第二步中处理旧table[index]中的节点时,这些节点要么在新table[index]处,要么在新table[index]和table[index+n]处,因此旧table各hash桶中的节点迁移不相互影响。ConcurrentHashMap扩容可以在多线程下完成,因此就需要计算每个线程需要负责处理多少个hash桶。
      int n = tab.length, stride;
              if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
                  stride = MIN_TRANSFER_STRIDE; // 最小值为16
      计算每个transfer处理桶的个数

      计算完成之后每个transfer按照计算的值处理相应下标位置的桶,扩容操作从旧数组的末尾向前一次对hash桶进行处理。从末尾向前处理主要是减少和遍历数据时的锁冲突。从旧数组的末尾向前代码如下:

      //标记一个transfer任务是否完成,完成为true,否则为false
      boolean advance = true;
      //标记整个扩容任务是否完成
      boolean finishing = false; // to ensure sweep before committing nextTab
      //仅截取部分代码片段,其中i表示当前transfer处理的hash桶的index,而bound表示当前transfer需要处理的hash桶的index的下界
      while (advance) {
          int nextIndex, nextBound;
          if (--i >= bound || finishing)  //表明一次transfer未执行完毕
              advance = false;
          else if ((nextIndex = transferIndex) <= 0) {  //transfer任务完成,可以准备退出扩容
              i = -1;
              advance = false;
          }
          //尝试申请transfer任务
          else if (U.compareAndSwapInt
                   (this, TRANSFERINDEX, nextIndex,
                    nextBound = (nextIndex > stride ?
                                 nextIndex - stride : 0))) {
              bound = nextBound;   //transfer任务中hash桶的下界
              i = nextIndex - 1;    //transfer当前处理的hash桶的index
              advance = false;
          }
      }
      计算每个transfer处理hash桶的区域

      扩容部分的完整代码如下:

      //x表示扩容需要增加的值
      //check表示计数操作是否会触发扩容,check<0表示不会触发
      //check<=1说明线程更新计数时没有遇到竞争
      private final void addCount(long x, int check) {
              CounterCell[] as; long b, s;
              if ((as = counterCells) != null ||
                  !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
                  CounterCell a; long v; int m;
                  boolean uncontended = true;
                  if (as == null || (m = as.length - 1) < 0 ||
                      (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                      !(uncontended =
                        U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
                      fullAddCount(x, uncontended);
                      return;
                  }
                  if (check <= 1)
                      return;
                  s = sumCount();
              }
              if (check >= 0) {   //检测是否扩容
                  Node<K,V>[] tab, nt; int n, sc;
                  //扩容基本条件
                  while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                         (n = tab.length) < MAXIMUM_CAPACITY) {
                      int rs = resizeStamp(n);   //计算本次扩容生成戳
                      if (sc < 0) {  //表明此时没有其他线程扩容
                          //5个条件只要有一个为true,则当前线程不能帮助扩容
                          if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                              sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                              transferIndex <= 0)
                              break;
                          //前5个条件都为false时尝试此次扩容,将正在执行transfer任务的线程数+1
                          if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                              transfer(tab, nt);
                      }
                      //尝试让当前线程成为第一个执行transfer任务的线程
                      else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                                   (rs << RESIZE_STAMP_SHIFT) + 2))
                          transfer(tab, null);   //执行扩容
                      s = sumCount();  //重新计数看是否需要下一次扩容
                  }
              }
          }
      
          /**
           * Helps transfer if a resize is in progress.
           * 如果正在进行扩容,则尝试帮助执行transfer任务
           */
          final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
              Node<K,V>[] nextTab; int sc;
              //判断是否仍然在执行扩容
              if (tab != null && (f instanceof ForwardingNode) &&
                  (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
                  int rs = resizeStamp(tab.length);  //计算扩容生成戳
                  //再次判断是否正在执行扩容
                  while (nextTab == nextTable && table == tab &&
                         (sc = sizeCtl) < 0) {
                      // 判断下是否能真正帮助此次扩容
                      if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                          sc == rs + MAX_RESIZERS || transferIndex <= 0)
                          break;   //不能帮助则终止
                      if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                          transfer(tab, nextTab);   //否则执行此次扩容
                          break;
                      }
                  }
                  return nextTab;   //返回扩容后的数组
              }
              return table;   //如果是返回table说明扩容已经结束,table被其它线程赋值新数组
          }
      
          //预先扩容,包含初始化逻辑的扩容
          //用于putAll,此时是需要考虑初始化;链表转化为红黑树中,不满足table容量条件时,进行一次扩容,此时就是普通的扩容
          private final void tryPresize(int size) {
              int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
                  tableSizeFor(size + (size >>> 1) + 1);
              int sc;
              while ((sc = sizeCtl) >= 0) {
                  Node<K,V>[] tab = table; int n;
                  if (tab == null || (n = tab.length) == 0) {  //用于处理初始化,跟initTable方法相同
                      n = (sc > c) ? sc : c;
                      if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                          try {
                              if (table == tab) {
                                  @SuppressWarnings("unchecked")
                                  Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                                  table = nt;
                                  sc = n - (n >>> 2);
                              }
                          } finally {
                              sizeCtl = sc;
                          }
                      }
                  }
                  // c <= sc,说明已经被扩容过了;n >= MAXIMUM_CAPACITY说明table数组已经到了最大长度
                  else if (c <= sc || n >= MAXIMUM_CAPACITY)
                      break;
                  else if (tab == table) {   //可以进行扩容
                      int rs = resizeStamp(n);
                      if (sc < 0) {
                          Node<K,V>[] nt;
                          if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                              sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                              transferIndex <= 0)
                              break;
                          if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                              transfer(tab, nt);
                      }
                      else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                                   (rs << RESIZE_STAMP_SHIFT) + 2))
                          transfer(tab, null);
                  }
              }
          }
      
          // 执行节点迁移,准确地说是迁移内容,因为很多节点都需要进行复制,复制能够保证读操作尽量不受影响
          private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
              int n = tab.length, stride;
              if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
                  stride = MIN_TRANSFER_STRIDE; //计算每个transfer负责处理多少个hash桶
              if (nextTab == null) {            //初始化Node数组
                  try {
                      @SuppressWarnings("unchecked")
                      Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                      nextTab = nt;
                  } catch (Throwable ex) {      // try to cope with OOME
                      sizeCtl = Integer.MAX_VALUE;
                      return;
                  }
                  nextTable = nextTab;
                  transferIndex = n;
              }
              int nextn = nextTab.length;
              // 转发节点,在旧数组的一个hash桶中所有节点都被迁移完后,放置在这个hash桶中,表明已经迁移完,对它的读操作会转发到新数组
              ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
              boolean advance = true;
              boolean finishing = false; //标识扩容工作是否完成
              for (int i = 0, bound = 0;;) {
                  Node<K,V> f; int fh;
                  while (advance) {
                      int nextIndex, nextBound;
                      if (--i >= bound || finishing)  // 一次transfer还未执行完毕
                          advance = false;
                      else if ((nextIndex = transferIndex) <= 0) {  // transfer任务已经没有了,表明可以准备退出扩容了
                          i = -1;
                          advance = false;
                      }
                      //尝试申请transfer任务
                      else if (U.compareAndSwapInt
                               (this, TRANSFERINDEX, nextIndex,
                                nextBound = (nextIndex > stride ?
                                             nextIndex - stride : 0))) {
                          // transfer申请到任务后标记自己的任务区间
                          bound = nextBound;
                          i = nextIndex - 1;
                          advance = false;
                      }
                  }
                  //处理扩容重叠
                  if (i < 0 || i >= n || i + n >= nextn) {
                      int sc;
                      if (finishing) {   //扩容完成
                          nextTable = null;
                          table = nextTab;
                          sizeCtl = (n << 1) - (n >>> 1);
                          return;
                      }
                      // 尝试把正在执行扩容的线程数减1,表明自己要退出扩容
                      if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                          // 判断下自己是不是本轮扩容中的最后一个线程,如果不是,则直接退出。
                          if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT) 
                              return;
                          finishing = advance = true;
                          //最后一个扩容的线程要重新检查一次旧数组的所有hash桶,看是否是都被正确迁移到新数组了。  
                          // 正常情况下,重新检查时,旧数组所有hash桶都应该是转发节点,此时这个重新检查的工作很快就会执行完。  
                          // 特殊情况,比如扩容重叠,那么会有线程申请到了transfer任务,但是参数错误(旧数组和新数组对不上,不是2倍长度的关系),  
                         // 此时这个线程领取的任务会作废,那么最后检查时,还要处理因为作废二没有被迁移的hash桶,把它们正确迁移到新数组中
                          i = n; // recheck before commit
                      }
                  }
                  else if ((f = tabAt(tab, i)) == null)  // hash桶本身为null,不用迁移,直接尝试安放一个转发节点
                      advance = casTabAt(tab, i, null, fwd);
                  else if ((fh = f.hash) == MOVED)  //当前hash桶有线程在对其扩容
                      advance = true; // already processed
                  else {
                      synchronized (f) {  //给f加锁
                          // 判断下加锁的节点仍然是hash桶中的第一个节点,加锁的是第一个节点才算加锁成功
                          if (tabAt(tab, i) == f) {
                              Node<K,V> ln, hn;
                              if (fh >= 0) {
                                  int runBit = fh & n; //记录当前hash值的第X(Math.pow(2,X)=n)位的值
                                  Node<K,V> lastRun = f;
                                  for (Node<K,V> p = f.next; p != null; p = p.next) {
                                      int b = p.hash & n;
                                      if (b != runBit) {
                                          runBit = b;
                                          lastRun = p;
                                      }
                                  }
                                  if (runBit == 0) {
                                      ln = lastRun;
                                      hn = null;
                                  }
                                  else {
                                      hn = lastRun;
                                      ln = null;
                                  }
                                  for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                      int ph = p.hash; K pk = p.key; V pv = p.val;
                                      if ((ph & n) == 0)
                                          ln = new Node<K,V>(ph, pk, pv, ln);
                                      else
                                          hn = new Node<K,V>(ph, pk, pv, hn);
                                  }
                                  setTabAt(nextTab, i, ln); // 放在新table的hash桶中
                                  setTabAt(nextTab, i + n, hn); // 放在新table的hash桶中
                                  setTabAt(tab, i, fwd);  // 把旧table的hash桶中放置转发节点,表明此hash桶已经被处理
                                  advance = true;
                              }
                              // 红黑树的情况,先使用链表的方式遍历,复制所有节点,根据高低位  
                              //组装成两个链表lo和hi,然后看下是否需要进行红黑树变换,最后放在新数组对应的hash桶中 
                              else if (f instanceof TreeBin) {
                                  TreeBin<K,V> t = (TreeBin<K,V>)f;
                                  TreeNode<K,V> lo = null, loTail = null;
                                  TreeNode<K,V> hi = null, hiTail = null;
                                  int lc = 0, hc = 0;
                                  for (Node<K,V> e = t.first; e != null; e = e.next) {
                                      int h = e.hash;
                                      TreeNode<K,V> p = new TreeNode<K,V>
                                          (h, e.key, e.val, null, null);
                                      //当前节点的hash值第X位为0
                                      if ((h & n) == 0) {
                                          if ((p.prev = loTail) == null)
                                              lo = p;
                                          else
                                              loTail.next = p;
                                          loTail = p;
                                          ++lc;
                                      }
                                      //当前节点的hash值第X位为1
                                      else {
                                          if ((p.prev = hiTail) == null)
                                              hi = p;
                                          else
                                              hiTail.next = p;
                                          hiTail = p;
                                          ++hc;
                                      }
                                  }
                                  //如果lo的size(lc)小于6,则将lo转化为链表
                                  //如果lo的size大于6且hi的size(hc)不等于0,重新构造红黑树,如果hi的size为0,则ln为原始红黑树
                                  ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                      (hc != 0) ? new TreeBin<K,V>(lo) : t;
                                  //hn的设置桶ln相同
                                  hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                      (lc != 0) ? new TreeBin<K,V>(hi) : t;
                                  setTabAt(nextTab, i, ln);
                                  setTabAt(nextTab, i + n, hn);
                                  setTabAt(tab, i, fwd);
                                  advance = true;
                              }
                          }
                      }
                  }
              }
          }
      扩容代码

      如下是一个链表扩容的示意图,第一张是一个hash桶中的一条链表,其中蓝色节点表示第X位为0,而红色表示第X位为1,扩容后旧table[i]的桶中为一个ForwardingNode节点,而新nextTab[i]和nextTable[i+n]的桶中分别为第二张和第三张图。

    4. Traverser只读遍历器:确切的说它不是方法,而是一个内部类。ConcurrentHashMap的多线程扩容增加了对ConcurrentHashMap遍历的困难。当遍历旧table时,如果遇到某个hash桶中为ForwardingNode节点,则遍历顺序参考基本类中ForwardingNode中的介绍。
      static class Traverser<K,V> {
              Node<K,V>[] tab;        // current table; updated if resized 扩容完成后的旧数组
              Node<K,V> next;         // the next entry to use  扩容完成后的新数组
              TableStack<K,V> stack, spare; //存储遍历到的 ForwardingNodes
              int index;              // index of bin to use next  下一个要读取的hash桶的下标
              int baseIndex;          // current index of initial table  起始下标
              int baseLimit;          // index bound for initial table   终止下标
              final int baseSize;     // initial table size  tab数组长度
      
              Traverser(Node<K,V>[] tab, int size, int index, int limit) {
                  this.tab = tab;
                  this.baseSize = size;
                  this.baseIndex = this.index = index;
                  this.baseLimit = limit;
                  this.next = null;
              }
      
              /**
               * Advances if possible, returning next valid node, or null if none.
               * 遍历器指针移动到下一个有实际数据的节点,并返回该节点,如果结束则返回null
               */
              final Node<K,V> advance() {
                  Node<K,V> e;
                  if ((e = next) != null)
                      e = e.next;
                  for (;;) {
                      Node<K,V>[] t; int i, n;  // must use locals in checks
                      if (e != null)
                          return next = e;  //节点非空则直接返回该节点
                      //达到边界条件直接返回null
                      if (baseIndex >= baseLimit || (t = tab) == null ||
                          (n = t.length) <= (i = index) || i < 0)
                          return next = null;
                      //处理特殊节点(ForwardingNode、TreeBin、ReservationNode)
                      if ((e = tabAt(t, i)) != null && e.hash < 0) {
                          if (e instanceof ForwardingNode) {
                              //遍历ForwardingNode的nextTable
                              tab = ((ForwardingNode<K,V>)e).nextTable;
                              e = null;
                              pushState(t, i, n);  //将当前位置入栈
                              continue;
                          }
                          else if (e instanceof TreeBin)
                              e = ((TreeBin<K,V>)e).first;
                          else
                              e = null;
                      }
                      if (stack != null)
                          recoverState(n);  //栈不为空,出栈
                      else if ((index = i + baseSize) >= n)  //栈为空,遍历下一个hash桶
                          index = ++baseIndex; // visit upper slots if present
                  }
              }
      
              /**
               * Saves traversal state upon encountering a forwarding node.
               * 入栈操作,保存当前对tab的遍历信息
               */
              private void pushState(Node<K,V>[] t, int i, int n) {
                  TableStack<K,V> s = spare;  // reuse if possible
                  if (s != null)
                      spare = s.next;
                  else
                      s = new TableStack<K,V>();
                  s.tab = t;
                  s.length = n;
                  s.index = i;
                  s.next = stack;
                  stack = s;
              }
      
              /**
               * Possibly pops traversal state.
               * 参数n为当前tab数组的长度
               * 可能会出栈,不出栈时,更改索引,准备遍历的是FN.nextTable中对应的第二个hash桶
               */
              private void recoverState(int n) {
                  TableStack<K,V> s; int len;
                  while ((s = stack) != null && (index += (len = s.length)) >= n) {
                      n = len;
                      index = s.index;
                      tab = s.tab;
                      s.tab = null;
                      TableStack<K,V> next = s.next;
                      s.next = spare; // save for reuse
                      stack = next;
                      spare = s;
                  }
                  if (s == null && (index += baseSize) >= n)
                      index = ++baseIndex;
              }
          }
      Traverser
    5. containsValue(Object value):遍历ConcurrentHashMap看是否存在值为value的Node。
      public boolean containsValue(Object value) {
              if (value == null)
                  throw new NullPointerException();
              Node<K,V>[] t;
              if ((t = table) != null) {
                  Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
                  for (Node<K,V> p; (p = it.advance()) != null; ) {
                      V v;
                      if ((v = p.val) == value || (v != null && value.equals(v)))
                          return true;
                  }
              }
              return false;
          }
      containsValue(Object value)
    6. containsKey(Object key):遍历ConcurrentHashMap看是否存在键为key的Node。
      public boolean containsKey(Object key) {
          return get(key) != null;
      }
      public V get(Object key) {
          Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
          int h = spread(key.hashCode());
          if ((tab = table) != null && (n = tab.length) > 0 &&
              (e = tabAt(tab, (n - 1) & h)) != null) {
              if ((eh = e.hash) == h) {
                  if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                      return e.val;
              }
              else if (eh < 0) //当hash值小于0时,说明当前节点为特殊节点,则以当前节点为根节点进行遍历,而不是遍历该节点的next节点
                  return (p = e.find(h, key)) != null ? p.val : null;
              while ((e = e.next) != null) {
                  if (e.hash == h &&
                      ((ek = e.key) == key || (ek != null && key.equals(ek))))
                      return e.val;
              }
          }
          return null;
      }
      containsKey(Object key)
    7. put(K key, V value):将该键值对插入ConcurrentHashMap中。
      public V put(K key, V value) {
          return putVal(key, value, false);
      }
      
      final V putVal(K key, V value, boolean onlyIfAbsent) {
          if (key == null || value == null) throw new NullPointerException();  //键或值存在null时直接抛出空指针异常
              int hash = spread(key.hashCode());
              int binCount = 0;
              for (Node<K,V>[] tab = table;;) {
                  Node<K,V> f; int n, i, fh;
                  if (tab == null || (n = tab.length) == 0)
                      tab = initTable();   //初始化table
                  else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                      if (casTabAt(tab, i, null,
                                   new Node<K,V>(hash, key, value, null)))
                          break;                   // no lock when adding to empty bin
                  }
                  else if ((fh = f.hash) == MOVED)
                      tab = helpTransfer(tab, f);  //发现转发节点,帮助扩容
                  else {
                      V oldVal = null;
                      synchronized (f) {
                          if (tabAt(tab, i) == f) {
                              if (fh >= 0) {  //当前hash值大于0说明hash桶中为链表
                                  binCount = 1;
                                  for (Node<K,V> e = f;; ++binCount) {
                                      K ek;
                                      if (e.hash == hash &&
                                          ((ek = e.key) == key ||
                                           (ek != null && key.equals(ek)))) {
                                          oldVal = e.val;   //如果当前键值对存在,则更新value为最新的value值
                                          if (!onlyIfAbsent)
                                              e.val = value;
                                          break;
                                      }
                                      Node<K,V> pred = e;
                                      if ((e = e.next) == null) {
                                          pred.next = new Node<K,V>(hash, key,
                                                                    value, null);
                                          break;
                                      }
                                  }
                              }
                              else if (f instanceof TreeBin) {  //hash桶值为红黑树
                                  Node<K,V> p;
                                  binCount = 2;
                                  if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                                 value)) != null) {
                                      oldVal = p.val;
                                      if (!onlyIfAbsent)
                                          p.val = value;
                                  }
                              }
                          }
                      }
                      if (binCount != 0) {
                          //如果当前hash桶中的size大于8,将该链表转化为红黑树
                          if (binCount >= TREEIFY_THRESHOLD)
                              treeifyBin(tab, i);
                          if (oldVal != null)
                              return oldVal;
                          break;
                      }
                  }
              }
              addCount(1L, binCount);  //计数值加1
              return null;
          }
      put(K key, V value)
    8. remove(Object key):删除键为key的Node。同样其中也包含了对replace(Object key, V value, Object cv)的介绍。
      public V remove(Object key) {
          return replaceNode(key, null, null);
      }
      final V replaceNode(Object key, V value, Object cv) {
          int hash = spread(key.hashCode());
          for (Node<K,V>[] tab = table;;) {
              Node<K,V> f; int n, i, fh;
              if (tab == null || (n = tab.length) == 0 ||
                  (f = tabAt(tab, i = (n - 1) & hash)) == null)
                  break;  //当前要移除的key不在table中
                  else if ((fh = f.hash) == MOVED)
                      tab = helpTransfer(tab, f);
                  else {
                      V oldVal = null;
                      boolean validated = false;
                      synchronized (f) {
                          if (tabAt(tab, i) == f) {
                              if (fh >= 0) {   //hash桶中为链表
                                  validated = true;
                                  for (Node<K,V> e = f, pred = null;;) {
                                      K ek;
                                      if (e.hash == hash &&
                                          ((ek = e.key) == key ||
                                           (ek != null && key.equals(ek)))) {
                                          V ev = e.val;
                                          if (cv == null || cv == ev ||
                                              (ev != null && cv.equals(ev))) {
                                              oldVal = ev;
                                              if (value != null)  //如果当前value不为空,则更新value
                                                  e.val = value;
                                              else if (pred != null)  //value为空,则删除该节点
                                                  pred.next = e.next;
                                              else
                                                  setTabAt(tab, i, e.next);  //删除的是hash的第一个Node
                                          }
                                          break;
                                      }
                                      pred = e;
                                      if ((e = e.next) == null)
                                          break;
                                  }
                              }
                              else if (f instanceof TreeBin) {  //hash桶为红黑树
                                  validated = true;
                                  TreeBin<K,V> t = (TreeBin<K,V>)f;
                                  TreeNode<K,V> r, p;
                                  if ((r = t.root) != null &&
                                      (p = r.findTreeNode(hash, key, null)) != null) {
                                      V pv = p.val;
                                      if (cv == null || cv == pv ||
                                          (pv != null && cv.equals(pv))) {
                                          oldVal = pv;
                                          if (value != null)
                                              p.val = value;
                                          else if (t.removeTreeNode(p)) //处理退化为链表的情况
                                              setTabAt(tab, i, untreeify(t.first));
                                      }
                                  }
                              }
                          }
                      }
                      //因为该方法可能是执行替换也可能是删除,如果是删除操作则计数值减1
                      if (validated) {
                          if (oldVal != null) {
                              if (value == null)
                                  addCount(-1L, -1);
                              return oldVal;
                          }
                          break;
                      }
                  }
              }
              return null;
          }
      remove(Object key)

      至此ConcurrentHashMap的主要方法也就介绍完了,综合比较Hashtable和ConcurrentHashMap,两者都是线程安全的,但是Hashtable是表级锁,而ConcurrentHashMap是段级锁,锁住的单个Node,而且ConcurrentHashMap可以并发读取。对整张表进行迭代时,ConcurrentHashMap使用了不同于Hashtable的迭代方式,而是一种弱一致性的迭代器。

  • 相关阅读:
    是否需要有代码规范
    小学四则运算生成程序(支持分数)总结
    HDU 4035 Maze 期望dp
    UVA
    HDU 3853 LOOPS 期望dp
    POJ 2096 Collecting Bugs 期望dp
    HDU 4405 Aeroplane chess 期望dp
    Codeforces Round #341 (Div. 2) E. Wet Shark and Blocks dp+矩阵加速
    HDU 4616 Game 树形dp
    HDU 4126 Genghis Khan the Conqueror 最小生成树+树形dp
  • 原文地址:https://www.cnblogs.com/zhanglei93/p/6760426.html
Copyright © 2020-2023  润新知