• AOJ GRL_1_B: Shortest Path


    题目链接:

      http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_B

     

    Single Source Shortest Path (Negative Edges)


    Input

    An edge-weighted graph G (VE) and the source r.

    |V| |E| r
    s0 t0 d0
    s1 t1 d1
    :
    s|E|−1 t|E|−1 d|E|−1
    

    |V| is the number of vertices and |E| is the number of edges in G. The graph vertices are named with the numbers 0, 1,..., |V|−1 respectively. r is the source of the graph.

    si and ti represent source and target vertices of i-th edge (directed) and di represents the cost of the i-th edge.

    Output

    If the graph contains a negative cycle (a cycle whose sum of edge costs is a negative value) which is reachable from the source r, print

    NEGATIVE CYCLE
    

    in a line.

    Otherwise, print

    c0
    c1
    :
    c|V|−1
    

    The output consists of |V| lines. Print the cost of the shortest path from the source r to each vertex 0, 1, ... |V|−1 in order. If there is no path from the source to a vertex, print "INF".

    Constraints

    • 1 ≤ |V| ≤ 1000
    • 0 ≤ |E| ≤ 2000
    • -10000 ≤ di ≤ 10000
    • There are no parallel edges
    • There are no self-loops

    Sample Input 1

    4 5 0
    0 1 2
    0 2 3
    1 2 -5
    1 3 1
    2 3 2
    

    Sample Output 1

    0
    2
    -3
    -1
    

    Sample Input 2

    4 6 0
    0 1 2
    0 2 3
    1 2 -5
    1 3 1
    2 3 2
    3 1 0
    

    Sample Output 2

    NEGATIVE CYCLE
    

    Sample Input 3

    4 5 1
    0 1 2
    0 2 3
    1 2 -5
    1 3 1
    2 3 2
    

    Sample Output 3

    INF
    0
    -5
    -3
    

    这题求单源最短路径+负圈,用Bellman-Ford算法。

    注意:这里求的负圈附带了条件,就是源点r能触及到的负圈。

    Bellman-Ford算法+求负圈链接

    代码:

    #include <iostream>
    #include <algorithm>
    #include <map>
    #include <vector>
    using namespace std;
    typedef long long ll;
    #define INF 2147483647
    
    struct edge{
        int from,to,cost; 
    };
    
    edge es[2010];  //存储边 
    
    int d[1010];  // d[i] 表示点i离源点的最短距离 
    
    int V,E; //点和边的数量 
    
    
    
    bool shortest_path(int s){
        fill(d,d+V,INF);
        
        d[s] = 0;
        
        int v = 0;
        while(true){
            bool update = false;
            for(int i = 0;i < E; i++){
                edge e = es[i];
                if(d[e.from] != INF && d[e.to] > d[e.from] + e.cost){
                    d[e.to] = d[e.from] + e.cost;
                    update = true;
                    if(v == V-1) return true;
                }
            }
            if(!update) break;
            v++;
        }
        return false;
    }
    
    
    int main(){
        
        int r;
        cin >> V >> E >> r;
    
        for(int i = 0;i < E; i++) cin >> es[i].from >> es[i].to >>es[i].cost;
        
        if(!shortest_path(r)){
            for(int i = 0;i < V; i++){
                if(d[i] == INF) cout <<"INF" <<endl;
                else cout << d[i] << endl;
            }
        }else{
            cout <<"NEGATIVE CYCLE" <<endl;
        }
        
    
        return 0;
    } 
  • 相关阅读:
    基于 Javassist 和 Javaagent 实现动态切面
    基于SpringBoot搭建应用开发框架(二) —— 登录认证
    服务器集成环境搭建
    多租户个性化服务路由
    基于SpringBoot搭建应用开发框架(一) —— 基础架构
    Redis 学习(三) —— 事务、消息发布订阅
    Redis 学习(二) —— 数据类型及操作
    Redis 学习(一) —— 安装、通用key操作命令
    用FastDFS一步步搭建文件管理系统
    在Intellij IDEA中使用Debug
  • 原文地址:https://www.cnblogs.com/zhangjiuding/p/7726211.html
Copyright © 2020-2023  润新知