• Java基础学习总结(88)——线程创建与终止、互斥、通信、本地变量


    线程创建与终止

    线程创建

    Thread类与 Runnable 接口的关系

    public interface Runnable {
            public abstract void run();
    }
    
    public class Thread implements Runnable {
        /* What will be run. */
            private Runnable target;
            ......
            /**
             * Causes this thread to begin execution; the Java Virtual Machine
             * calls the <code>run</code> method of this thread.
             */
            public synchronized void start() {......}
    
            ......
        @Override
        public void run() {
            if (target != null) {
                target.run();
            }
            }
            ......
    }
    

    Thread类与 Runnable接口 都位于java.lang包中。 从上面我们可以看出,Runnable接口中只定义了run()方法,Thread类实现了Runnable 接口并重写了run()方法。 当调用Thread 类的 start()方法时,实际上Java虚拟机就去调用Thread 类的 run()方法 ,而 Thread 类的 run()方法 中最终调用的是 Runnable 类型对象的run()方法 。

    继承 Thread并重写 run 方法

    public class ThreadTest1 extends Thread {
        @Override
        public void run() {
            while(true) {
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println("thread 1:" + Thread.currentThread().getName());
            }
        }
    
        public static void main(String[] args) {
            ThreadTest1 thread = new ThreadTest1 ();
            thread.start();
        }//main end
    }
    

    可以写成内部类的形式, new Thread(){ @Override run(...) }.start();

    实现 Runnable接口并重写 run 方法

    public class ThreadTest2  implements Runnable {
        @Override
        public void run() {
            while(true) {
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println("thread 3:" + Thread.currentThread().getName());
            }
        }
        public static void main(String[] args) {
            ThreadTest2  thread3 = new ThreadTest2();
            Thread thread = new Thread(thread3);
            thread.start();
        }//main end
    }
    

    可以写成内部类的形式, new Thread( new Runnable(){@Override run(...)} ).start();

    线程终止

    当调用 Thread类的 start() 方法时,将会创建一个线程,这时刚创建的线程处于就绪状态(可运行状态),并没有运行,处于就绪状态的线程就可以等 JVM 调度。当 JVM 调度该线程时,该线程进入运行状态,即执行 Thread 类的 run() 方法中的内容。 run() 方法执行完,线程结束,线程进入死亡状态。这是线程自然终止的过程,我们也可以通过 Thread 类提供的一些方法来终止线程。

    interrupt()isInterrupted()interrupted() 方法介绍

    stop() 方法没有做任何的清除操作就粗暴终止线程,释放该线程所持有的对象锁(下文将介绍),受该对象锁保护的其它对象对其他线程可见,因此具有不安全性。

    suspend() 方法会使目标线程会停下来,但仍然持有在这之前获得的对象锁,对任何线程来说,如果它们想恢复目标线程,同时又试图使用任何一个锁定的资源,就会造成死锁。

    终上所述, 不建议使用stop()方法和 suspend() 方法来终止线程,通常我们通过 interrupt() 方法来终止处于阻塞状态和运行状态的线程 。

    需要注意的是, interrupt()方法不会中断一个正在运行的线程,仅仅是将线程的中断标记设为 true ,当调用了阻塞方法之后,线程会不断监听中断标志,如果为true,则产生一个 InterruptedException 异常,将 InterruptedException 放在 catch 中就能终止线程。

    isInterrupted()方法可以返回中断标记 ,常用循环判断条件。

    interrupted()方法测试当前线程是否已经中断,线程的中断标志由该方法清除。 interrupted()除了返回中断标记之外,它还会清除中断标记 。

    interrupt() 用法

    看下面例子

    public class ThreadInterruptedTest extends Thread {
        @Override
        public void run() {
                try {
                    int i = 0;
                    while(!isInterrupted()) {
                        i ++ ;
                        Thread.sleep(1000);
                        System.out.println(this.getName() + " is looping,i=" + i);
                    }
                } catch (InterruptedException e) {
                    System.out.println(this.getName() + 
                            " catch InterruptedException,state:" + this.getState());  
                    e.printStackTrace();
                }
        }
    
        public static void main(String[] args) throws Exception {
            
            ThreadInterruptedTest thread = new ThreadInterruptedTest();
            System.out.println(thread.getName() 
                    + " state:" + thread.getState());  
            
            thread.start();
            System.out.println(thread.getName() 
                    + " state:" + thread.getState());  
            
            Thread.sleep(5000);
            
            System.out.println("flag: " + thread.isInterrupted());
            
            //发出中断指令
            thread.interrupt();
            
            System.out.println("flag: " + thread.isInterrupted());
            
            System.out.println(thread.getName() 
                    + " state:" + thread.getState());  
            
            System.out.println(thread.interrupted());
        }
    }
    

    运行结果

    Thread-0 state:NEW
    Thread-0 state:RUNNABLE
    Thread-0 is looping,i=1
    Thread-0 is looping,i=2
    Thread-0 is looping,i=3
    Thread-0 is looping,i=4
    flag: false
    flag: true
    Thread-0 state:TIMED_WAITING
    Thread-0 catch InterruptedException,state:RUNNABLE
    false
    java.lang.InterruptedException: sleep interrupted
        at java.lang.Thread.sleep(Native Method)
        at com.itpsc.thread.ThreadInterruptedTest.run(ThreadInterruptedTest.java:11)
    

    从运行结果可以看出,调用 interrupt() 发出中断指令前,中断标志位 false ,发出中断指令后中断标志位为 true ,而调用 interrupted() 方法后则中断标志被清除。从发出的异常来看,是在一个 sleep interrupted ,且发出异常后线程被唤醒,以便线程能从异常中正常退出。

    线程运行状态图

    线程从创建到终止可能会经历各种状态。在 . . .State类的源码中,可以看到线程有以下几种状态: NEW 、 RUNNABLE 、 BLOCKED 、 WAITING 、 TIMED_WAITING 、 TERMINATED 。各种状态的转换如下:

      

    当通过 Thread t = new Thread()方式创建线程时,线程处于新建状态;当调用 t.start() 方法时,线程进入可运行状态(注意,还没有运行);处于可运行状态的线程将在适当的时机被 CPU 资源调度器调度,进入运行状态,也就是线程执行 run() 方法中的内容; run() 方法执行完或者程序异常退出线程进入终止状态。线程从运行状态也有可能进入阻塞状态,如调用 wait() 方法后进入等待对象锁(下文将介绍),调用 sleep() 方法后进行入计时等待。

    线程互斥

    现在我们已经知道线程的创建与终止了。互斥,是指系统中的某些共享资源,一次只允许一个线程访问,当一个线程正在访问该临界资源时,其它线程必须等待。

    对象锁

    在 java中, 每一个对象有且仅有一个锁,锁也称为对象监视器 。通过对象的锁,多个线程之间可以实现对某个方法(临界资源)的互斥访问。那么,如何获取对象的锁呢?当我们 调用对象的synchronized修饰的方法或者 synchronized 修饰的代码块时,锁住的是对象实例,就获取了该对象的锁 。

    全局锁

    Java中有实例对象也有类对象,竟然有对象锁,那么久有类锁,也称 全局锁 。 当synchronized修饰静态方法或者静态代码块时,锁住的是该类的 Class 实例(字节码对象),获取的便是该类的全局锁 。看下面获取对象锁实现线程互斥的两种方式。

    线程互斥的两种方式

    先看下面这个没有实现线程互斥的例子。

    public class SynchronizedTest {
    
        public static void main(String[] args) {
            new SynchronizedTest().init();
        }
        
        private void init() {
            final Outputer output = new Outputer();
            //线程1打印"hello,i am thread 1"
            new Thread(new Runnable(){
                @Override
                public void run() {
                    while(true) {
                         try{
                             Thread.sleep(1000);
                         }catch(InterruptedException e) {
                             e.printStackTrace();
                         }
                         output.output("hello,i am thread 1");
                    }    
                }
            }).start();
            
            //线程2打印"hello,i am thread 2"
            new Thread(new Runnable(){
                @Override
                public void run() {
                    while(true) {
                         try{
                             Thread.sleep(1000);
                         }catch(InterruptedException e) {
                             e.printStackTrace();
                         }
                         output.output("hello,i am thread 2");
                    }
                }
            }).start();
        }
        
        class Outputer {
            public void output(String name) {
                for(int i=0; i<name.length(); i++) {
                    System.out.print(name.charAt(i));
                }
                System.out.println();
            }
        }
    }
    

    运行结果

    hello,i am thread 1
    hello,i am thread 2
    hello,i am hellthread 1
    o,i am thread 2
    hello,i am thread 2
    hello,i am thread 1
    hello,i am thread 2
    hello,i am threadhel 2lo,i am thread 
    1
    

    线程 1和线程2同时调用 进行输出,从运行结果可以看出,线程之间没有执行完各自的输出任务就被交替了运行了 。下面通过对象的锁实现线程1和线程2对output方法的互斥访问。

    synchronized 修饰方法

    使用 synchronized 对 output 方法进行修饰,可以让调用者获得锁。 synchronized 修饰方法没有显示声明锁的对象,默认是当前方法所在类的对象 this 。

    public synchronized void output(String name) {
        for(int i=0; i<name.length(); i++) {
            System.out.print(name.charAt(i));
        }
        System.out.println();
    }  
    

    synchronized 修饰代码块

    使用 synchronized 对 output 方法中的代码块进行修饰,也可以让调用者获得锁。

    public void output(String name) {
        synchronized(this){
            for(int i=0; i<name.length(); i++) {
                System.out.print(name.charAt(i));
            }
            System.out.println();
        }
    } 
    

    使用 synchronized之后,线程 1 和线程 2 对 output 方法实现了互斥访问。

    hello,i am thread 1
    hello,i am thread 2
    hello,i am thread 1
    hello,i am thread 2
    hello,i am thread 1
    hello,i am thread 2
    hello,i am thread 1
    

    synchronized 用法

    先看下面的例子,我们来总结下 synchronized 的一些常用用法。

    public class SynchronizedTest {
    
        public static void main(String[] args) {
            new SynchronizedTest().init();
        }
        
        private void init() {
            final Outputer output = new Outputer();
            //线程1打印"hello,i am thread 1"
            new Thread(new Runnable(){
                @Override
                public void run() {
                    output.output("hello,i am thread 1");
                }
            }).start();
            
            //线程2打印"hello,i am thread 2"
            new Thread(new Runnable(){
                @Override
                public void run() {
                    output.output("hello,i am thread 2");
                }
            }).start();
        }
        
        static class Outputer {
            public synchronized void output(String name) {
                for(int i=0; i<5; i++) {
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println(name);
                }
            }
            
            public void output2(String name) {
                synchronized(this) {
                    for(int i=0; i<5; i++) {
                        try {
                            Thread.sleep(1000);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                        System.out.println(name);
                    }
                }
            }
            
            public void output3(String name) {
                for(int i=0; i<5; i++) {
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println(name);
                }
            }
            
            public static synchronized void output4(String name) {
                for(int i=0; i<5; i++) {
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println(name);
                }
            }
            
            public void output5(String name) {
                synchronized(Outputer.class) {
                    for(int i=0; i<5; i++) {
                        try {
                            Thread.sleep(1000);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                        System.out.println(name);
                    }
                }
            }
        }
    }
    

    运行结果

    hello,i am thread 1
    hello,i am thread 1
    hello,i am thread 1
    hello,i am thread 1
    hello,i am thread 1
    hello,i am thread 2
    hello,i am thread 2
    hello,i am thread 2
    hello,i am thread 2
    hello,i am thread 2
    

    线程 1和线程 2 同时访问 output 对象的 synchronized 修饰的 output 方法,即两个线程竞争的是 output 对象的锁,这是同一个锁,所以当线程 1 在持有锁的时候,线程 2 必须等待,即下面的用法 1 。

    用法 1

    当一个线程访问某个对象的 synchronized 方法或者 synchronized 代码块时, 其它线程 对该对象的 该synchronized 方法或者 synchronized 代码块 的访问将阻塞。

    用法 2

    当一个线程访问某个对象的 synchronized 方法或者 synchronized 代码块时, 其它线程 对该对象的 其他synchronized 方法或者 synchronized 代码块 的访问将阻塞。

    修该上面的 SynchronizedTest 例子,线程 1 访问 output 方法,线程 2 访问 output2 方法,运行结果同上,因为 output 方法 和 output2 方法都属于同一个对象 output ,因此线程 1 和线程 2 竞争的也是同一个锁。

    用法 3

    当一个线程访问某个对象的 synchronized 方法或者 synchronized 代码块时, 其它线程仍然可以 对该对象的 其他非synchronized 方法或者 synchronized 代码块 访问。

    修该上面的 SynchronizedTest 例子,线程 1 访问 output 方法,线程 2 访问 output3 方法,运行结果是线程 1 和线程 2 交替输出。结果显而易见,线程 2 访问 output3 方法并不是 synchronized 修饰的 output 方法或者代码块,线程 2 并不需要持有锁,因此线程 1 的运行不会阻塞线程 2 的运行。

    用法 4

    当 synchronized 修饰静态方法时,锁住的是该类的 Class 实例(字节码对象)。修该上面的 SynchronizedTest 例子,线程 1 访问 output4 方法,线程 2 访问 output5 方法,运行结果同用法 1 ,说明线程 1 和线程 2 竞争的是 Outputer 类的 Class 实例(字节码对象)的锁。

    线程通信

    多个线程之间往往需要相互协作来完成某一个任务, synchronized 和对象锁能实现线程互斥,但是不能实现线程通信 。

    wait() otify() otifyAll() 介绍

    线程之间的通信通过 java.lang 包中Object类中的 wait()方法和notify()、notifyAll()等方法进行。我们知道, Java 中 每个对象都有一个锁 , wait() 方法用于等待对象的锁, notify()、notifyAll() 方法用于通知其他线程对象锁可以使用。

    wait() otify() otifyAll()依赖于对象锁,对象锁是对象所持有,Object类是所有java类的父类,这样每一个java类(对象)都有线程通信的基本方法 。这就是这些方法定义在Object类中而不定义在Thread类中的原因。

    wait()方法的会让当前线程释放对象锁并进入等待对象锁的状态,当前线程是指正在cpu上运行的线程。当前线程调用notify() otifyAll()后,等待对象锁的线程将被唤醒。

    调用 wait()方法或者notify()方法的对象必须和对象锁所属的对象是同一个对象,并且必须在synchronized方法或者synchronized代码块中被调用。

    yieId() 介绍

    yieId()的作用是给线程调度器一个提示,告知线程调度器当前线程愿意让出 CPU ,但是线程调度器可以忽略这个提示。因此, yieId()的作用仅仅是告知线程调度器当前线程愿意让出 CPU 给其他线程执行(竟然只是愿意,当前线程可以随时反悔,那其他线程也不一定能得到 CPU 执行),而且不会让当前线程释放对象锁 。

    yieId()能让当前线程由运行状态进入到就绪状态,从而让其它具有相同优先级的等待线程获取执行权。但是,并不能保证在当前线程调用 yield() 之后,其它具有相同优先级的线程就一定能获得执行权,也有可能当前线程又进入到运行状态继续运行。

    yieId() 只建议在测试环境中使用。

    wait()和 yield() 的区别

    ( 1) wait() 是让线程由运行状态进入到等待 ( 阻塞 ) 状态,而 yield() 是让线程由运行状态进入到就绪状态。

    ( 2) wait() 是让线程释放它所持有对象的锁,而 yield() 方法不会释放锁。

    多线程交替输出及 volatile 应用

    下面的例子是 “主线程输出三次接着子线程输出三次”,重复两次。

    public class WaitnotifyTest {
        
        public static volatile boolean shouldChildren = false;
        
        public static void main(String[] args) throws Exception{
            final Outputer outputer = new Outputer();
            
            //创建子线程
            Thread chrild = new Thread(new Runnable(){
                @Override
                public void run() {
                    try {
                        for(int i=0;i<2;i++)
                            outputer.children();
                    } catch (Exception e) {
                        e.printStackTrace();
                    }
                }
            });
            chrild.start();
            //主线程
            for(int i=0;i<2;i++)
                outputer.main();
        }
    }
    
    
    class Outputer {
        //子线程循环输出
        public synchronized void children() throws Exception{
            while(!WaitnotifyTest.shouldChildren) {
                System.out.println(Thread.currentThread().getName()
                        + " thread end loop,go to waitting");
                //子线程进入等待状态
                this.wait();
            }
            
            System.out.println(Thread.currentThread().getName()
                    + " thread start loop");
            for(int i=1; i<=3; i++) {
                System.out.println("hello,i am chrildren thread,loop:" + i);
            }
            
            WaitnotifyTest.shouldChildren = false;
            //唤醒主线程
            this.notify();
        }
        
        //主线程循环输出
        public synchronized void main() throws Exception{
            while(WaitnotifyTest.shouldChildren) {
                System.out.println(Thread.currentThread().getName()
                        + " thread end loop,go to waitting");
                //主线程进入等待状态
                this.wait();
            }
            
            System.out.println(Thread.currentThread().getName()
                    + " thread start loop");
            for(int i=1; i<=3; i++) {
                System.out.println("hello,i am main thread,loop:" + i);
            }
            
            WaitnotifyTest.shouldChildren = true;
            //唤醒子线程
            this.notify();
        }
    }
    

    运行结果

    main thread start loop
    hello,i am main thread,loop:1
    hello,i am main thread,loop:2
    hello,i am main thread,loop:3
    main thread end loop,go to waitting
    Thread-0 thread start loop
    hello,i am chrildren thread,loop:1
    hello,i am chrildren thread,loop:2
    hello,i am chrildren thread,loop:3
    Thread-0 thread end loop,go to waitting
    main thread start loop
    hello,i am main thread,loop:1
    hello,i am main thread,loop:2
    hello,i am main thread,loop:3
    Thread-0 thread start loop
    hello,i am chrildren thread,loop:1
    hello,i am chrildren thread,loop:2
    hello,i am chrildren thread,loop:3
    

    volatile修饰 shouldChildren,线程直接读取shouldChildren变量并且不缓存它,修改了shouldChildren 立马让其他线程可见,这就确保线程读取到的变量是一致的。

    线程本地变量

    线程本地变量

    线程本地变量,可能称为 线程局部变量 更容易理解,即为 每一个使用该变量的线程都提供一个变量值的副本 ,相当于将变量的副本绑定到线程中,每一个线程可以独立地修改自己的变量副本,而不会和其它线程的变量副本冲突。 在线程消失之后,线程局部变量的所有副本都会被垃圾回收 (下面的源码分析中将提到) 。

    ThreadLocal 实现分析

    ThreadLocal

    在 java.lang.Thread类中,有一个 ThreadLocal.ThreadLocalMap类型的变量 threadLocals ,这个变量就是用来存储线程局部变量 的。

    /* ThreadLocal values pertaining to this thread. This map is maintained
     * by the ThreadLocal class. */
    ThreadLocal.ThreadLocalMap threadLocals = null; 
    

    下面我们重点分析 ThreadLocal的内部实现。 ThreadLocal 也位于 java.lang 包中。其主要成员有:

    public T get() {}
    private T setInitialValue() {}
    public void set(T value) {}
    private void remove(ThreadLocal key) {}
    ThreadLocalMap getMap(Thread t){}
    void createMap(Thread t, T firstValue) {}
    static class ThreadLocalMap {} 
    

    Set

    我们从 set方法开始。 Set 方法源码如下

    /**
     * Sets the current thread's copy of this thread-local variable
     * to the specified value.  Most subclasses will have no need to
     * override this method, relying solely on the {@link #initialValue}
     * method to set the values of thread-locals.
     *
     * @param value the value to be stored in the current thread's copy of
     *        this thread-local.
     */
    public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }  
    

    先获取当前的线程,然后通过 getMap(t)方法获取到一个 map , map 的类型为 ThreadLocalMap 。

    这个 map其实就是存储线程变量的对象 threadLocals 。 ThreadLocalMap是 ThreadLocal 中的一个内部类,是一个定制的 hashmap 以便适用于存储线程本地变量 。竟然是定制的hashmap,那么就有 Entry 和 table ( hashmap 的内部实现参考上一篇: Java基础加强之集合篇(模块记忆、精要分析) )。而 ThreadLocalMap中的 Entry 继承了 WeakReference ,弱引用是不能保证不被垃圾回收器回收的 ,这就是前文提到的在线程消失之后,线程局部变量的所有副本都会被垃圾回收。此外,Entry 中使用 ThreadLocal 作为 key ,线程局部变量作为 value 。如果 threadLocals 不为空,则设值否者调用 createMap 方法创建 threadLocals 。 注意设值的时候传的是this而不是当前线程 t 。

    /**
     * ThreadLocalMap is a customized hash map suitable only for
     * maintaining thread local values. No operations are exported
     * outside of the ThreadLocal class. The class is package private to
     * allow declaration of fields in class Thread.  To help deal with
     * very large and long-lived usages, the hash table entries use
     * WeakReferences for keys. However, since reference queues are not
     * used, stale entries are guaranteed to be removed only when
     * the table starts running out of space.
     */
    static class ThreadLocalMap {
    
        /**
         * The entries in this hash map extend WeakReference, using
         * its main ref field as the key (which is always a
         * ThreadLocal object).  Note that null keys (i.e. entry.get()
         * == null) mean that the key is no longer referenced, so the
         * entry can be expunged from table.  Such entries are referred to
         * as "stale entries" in the code that follows.
         */
        static class Entry extends WeakReference<ThreadLocal> {
            /** The value associated with this ThreadLocal. */
            Object value;
    
            Entry(ThreadLocal k, Object v) {
                super(k);
                value = v;
            }
        } 
    

    接下来我们看看 createMap 方法

    /**
     * Create the map associated with a ThreadLocal. Overridden in
     * InheritableThreadLocal.
     *
     * @param t the current thread
     * @param firstValue value for the initial entry of the map
     * @param map the map to store.
     */
    void createMap(Thread t, T firstValue) {
        t.threadLocals = new ThreadLocalMap(this, firstValue);
    } 
    

    createMap方法其实就是为当前线程的 threadLocals 变量分配空间并存储线程的第一个变量。现在我们已经知道线程是如何初始化并设值自己的局部变量了,下面我们看看取值。

    Get

    /**
     * Returns the value in the current thread's copy of this
     * thread-local variable.  If the variable has no value for the
     * current thread, it is first initialized to the value returned
     * by an invocation of the {@link #initialValue} method.
     *
     * @return the current thread's value of this thread-local
     */
    public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null)
                return (T)e.value;
        }
        return setInitialValue();
    }  
    

    先获取当前的线程,然后通过 getMap(t)方法获取当前线程存变量的对象 threadLocals ,如果 threadLocals 不为空则取值并返回( 注意传入的key是 this 对象而不是当前线程 t ),否则调用setInitialValue方法初始化。 setInitialValue 和 set 方法唯一不同的是调用了 initialValue 进行初始化,也就是在获取变量之前要初始化。

    /**
     * Variant of set() to establish initialValue. Used instead
     * of set() in case user has overridden the set() method.
     *
     * @return the initial value
     */
    private T setInitialValue() {
        T value = initialValue();
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
        return value;
    }  
    

    总的来讲,每创建一个线程( Thread对象),该线程即拥有存储线程本地变量的 threadLocals 对象, threadLocals 对象初始为 null ,当通过 ThreadLocal 对象调用 set/get 方法时,就会对线程的 threadLocals 对象进行初始化,并且以当前 ThreadLocal 对象为键值,以 ThreadLocal 要保存的变量为 value ,存到 threadLocals 。看下面的例子。

    ThreadLocal 应用

    
    public class ThreadLocalShareVariable {
        
        public static void main(String[] args) {
            //创建3个线程
            for(int i=0; i<3;i++) {
                //创建线程
                new Thread(new Runnable(){
                    @Override
                    public void run() {
                        //线程设置自己的变量
                        int age = new Random().nextInt(100);
                        String name = getRandomString(5);
                        System.out.println("Thread " + Thread.currentThread().getName() 
                                + " has put data:" + name + " " + age);
                        
                        //存储与当前线程有关的变量
                        Passenger.getInstance().setName(name);
                        Passenger.getInstance().setAge(age);
                        
                        //线程访问共享变量
                        new ModuleA().getData();
                        new ModuleB().getData();
                    }
                }).start();
            }
        }
        
        static class ModuleA {
            public void getData(){
                //获取与当前线程有关的变量
                String name = Passenger.getInstance().getName();
                int data = Passenger.getInstance().getAge();
                System.out.println("moduleA get data from " 
                + Thread.currentThread().getName() + ":" + name + " "+ data);
            }
        }
        
        static class ModuleB {
            public void getData(){
                //获取与当前线程有关的变量
                String name = Passenger.getInstance().getName();
                int data = Passenger.getInstance().getAge();
                System.out.println("moduleB get data from " 
                + Thread.currentThread().getName() + ":" + name + " "+ data);
            }
        }
        
        /**
         * 随机生成字符串
         * @param length
         * @return
         */
        public static String getRandomString(int length){
            final String str = "abcdefghijklmnopqrstuvwxyz"; 
            StringBuffer sb = new StringBuffer();
            int len = str.length();
            for (int i = 0; i < length; i++) {
                sb.append(str.charAt(
                        (int) Math.round(Math.random() * (len-1))));
            }
            return sb.toString();
        }
    
    }
    
    class Passenger {
        private String name;
        private int age;
        public String getName() {
            return name;
        }
        public void setName(String name) {
            this.name = name;
        }
        public int getAge() {
            return age;
        }
        public void setAge(int age) {
            this.age = age;
        }
        public Passenger(){}
        
        //ThreadLocal存储线程变量
        public static ThreadLocal<Passenger> thsd = new ThreadLocal<Passenger>();
        
        public static Passenger getInstance() {
            //获取当前线程范围内的共享变量实例
            Passenger passenger = thsd.get();
            //懒汉模式创建实例
            if(passenger == null) {
                passenger = new Passenger();
                thsd.set(passenger);
            }
            return passenger;
        }
        
    }
    
    View Code

    运行结果

    
    Thread Thread-1 has put data:vwozg 33
    Thread Thread-2 has put data:hubdn 30
    Thread Thread-0 has put data:mkwrt 35
    moduleA get data from Thread-2:hubdn 30
    moduleA get data from Thread-0:mkwrt 35
    moduleA get data from Thread-1:vwozg 33
    moduleB get data from Thread-1:vwozg 33
    moduleB get data from Thread-0:mkwrt 35
    moduleB get data from Thread-2:hubdn 30
    
    View Code

    创建 3个线程,每个线程要保存一个 Passenger 对象,并且通过 ModuleA 、 ModuleB 来访问每个线程对应保存的 Passenger 对象。

    多线程之间共享变量

    上面我们讨论的是多线程之间如何访问自己的变量。那么多线程之间共享变量时如何的呢,看下的例子,线程 1对共享变量进行减一操作,线程 2 对共享变量进行加 2 操作。

    
    public class MutilThreadShareVariable {
        static volatile int count = 100;
        public static void main(String[] args) throws Exception{
            final ShareDataDec sdDec = new ShareDataDec();
            final ShareDataInc sdInc = new ShareDataInc();
            //线程1
            new Thread(new Runnable() {
                @Override
                public void run() { 
                    for(int i=0;i<5;i++) {
                        sdDec.dec();
                        try {
                            Thread.sleep(1000);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }
                }
            }).start();
            //线程2
            new Thread(new Runnable(){
                @Override
                public void run() {
                    for(int i=0;i<5;i++) {
                        sdInc.inc();
                        try {
                            Thread.sleep(1000);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }
                }
            }).start();;
        }
        
        static class ShareDataDec {
            public synchronized void dec() {
                count --;
                System.out.println("Thread " + Thread.currentThread().getName() 
                        + " dec 1 from count,count remain " + count);
            }
        }
        
        static class ShareDataInc {
            public synchronized void inc() {
                count = count + 2;
                System.out.println("Thread " + Thread.currentThread().getName() 
                        + " inc 2 from count,count remain " + count);
            }
        }
    }
    
    View Code  

    运行结果

    
    Thread Thread-0 dec 1 from count,count remain 99
    Thread Thread-1 inc 2 from count,count remain 101
    Thread Thread-0 dec 1 from count,count remain 100
    Thread Thread-1 inc 2 from count,count remain 102
    Thread Thread-0 dec 1 from count,count remain 101
    Thread Thread-1 inc 2 from count,count remain 103
    Thread Thread-0 dec 1 from count,count remain 102
    Thread Thread-1 inc 2 from count,count remain 104
    Thread Thread-0 dec 1 from count,count remain 103
    Thread Thread-1 inc 2 from count,count remain 105
    
    View Code

    线程共享变量,只要对要对共享变量进行修改的代码进行同步即可。

  • 相关阅读:
    css基础属性
    选择器的类型
    css的三种表现形式
    表单和表格
    如何比较两个xml 的异同
    xslt 简单的语法
    xslt 和一个demo
    event based xml parser (SAX) demo
    SAX vs. DOM (Event vs. Tree)
    xmlns 实例分析
  • 原文地址:https://www.cnblogs.com/zhanghaiyang/p/7212714.html
Copyright © 2020-2023  润新知