• 1078 Hashing (25 分)


    1078 Hashing (25 分)

    The task of this problem is simple: insert a sequence of distinct positive integers into a hash table, and output the positions of the input numbers. The hash function is defined to be H(key)=key%TSize where TSize is the maximum size of the hash table. Quadratic probing (with positive increments only) is used to solve the collisions.

    Note that the table size is better to be prime. If the maximum size given by the user is not prime, you must re-define the table size to be the smallest prime number which is larger than the size given by the user.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains two positive numbers: MSize (104​​) and N (MSize) which are the user-defined table size and the number of input numbers, respectively. Then N distinct positive integers are given in the next line. All the numbers in a line are separated by a space.

    Output Specification:

    For each test case, print the corresponding positions (index starts from 0) of the input numbers in one line. All the numbers in a line are separated by a space, and there must be no extra space at the end of the line. In case it is impossible to insert the number, print "-" instead.

    Sample Input:

    4 4
    10 6 4 15
    

    Sample Output:

    0 1 4 -
    思路:
      
    #include<iostream>
    #include<vector>
    #include<algorithm>
    #include<queue>
    #include<string>
    #include<map>
    #include<set>
    #include<stack>
    #include<string.h>
    #include<cstdio>
    #include <unordered_map>
    #include<cmath>
    
    using namespace std;
    int findPrim(int mSize)
    {
        for(int num=mSize;;num++)
        {
            bool flag=true;
            if(num==1)
                continue;
            for(int i=2;i<=sqrt(num);i++)
            {
                if(num%i==0)
                    flag=false;
            }
            if(flag)
            {
                return num;
            }
        }
    }
    
    int main()
    {
        int mSize,n;
        scanf("%d%d",&mSize,&n);
        int len=findPrim(mSize>n?mSize:n);
        int a[len];
        //cout<<len<<endl;
        fill(a,a+len,-1);
        vector<int>result;
        for(int i=0;i<n;i++)
        {
            int key;
            scanf("%d",&key);
            int step;
            for(step=0;step<len;step++)
            {
                int index=(key+step*step)%len;
                if(a[index]==-1)
                {
                    a[index]=key;
                    result.push_back(index);
                    break;
                }
            }
            if(step==len)
            {
                result.push_back(-1);
            }
        }
        if(result[0]==-1)
            printf("-");
        else
            printf("%d",result[0]);
        for(int i=1;i<result.size();i++)
        {
            if(result[i]==-1)
                printf(" -");
            else
               printf(" %d",result[i]);
        }
        printf("
    ");
        return 0;
    }
     
  • 相关阅读:
    RabbitMQ之六种队列模式
    面试资料
    位掩码的介绍与使用(小白鼠试毒问题)
    递归函数的写法(以strcpy函数为例)
    查找算法简介及实现
    八大排序算法概述及实现
    快速排序算法(一)
    最大(小)堆和堆排序简介
    满二叉树各种节点数目的计算
    LPSTR、LPCSTR、LPWSTR、LPCWSTR、LPTSTR、LPCTSTR的来源及意义
  • 原文地址:https://www.cnblogs.com/zhanghaijie/p/10329759.html
Copyright © 2020-2023  润新知