• codeforces 719E E. Sasha and Array(线段树)


    题目链接:

    E. Sasha and Array

    time limit per test
    5 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Sasha has an array of integers a1, a2, ..., an. You have to perform m queries. There might be queries of two types:

    1. 1 l r x — increase all integers on the segment from l to r by values x;
    2. 2 l r — find , where f(x) is the x-th Fibonacci number. As this number may be large, you only have to find it modulo109 + 7.

    In this problem we define Fibonacci numbers as follows: f(1) = 1, f(2) = 1, f(x) = f(x - 1) + f(x - 2) for all x > 2.

    Sasha is a very talented boy and he managed to perform all queries in five seconds. Will you be able to write the program that performs as well as Sasha?

    Input

    The first line of the input contains two integers n and m (1 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — the number of elements in the array and the number of queries respectively.

    The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).

    Then follow m lines with queries descriptions. Each of them contains integers tpiliri and may be xi (1 ≤ tpi ≤ 2, 1 ≤ li ≤ ri ≤ n,1 ≤ xi ≤ 109). Here tpi = 1 corresponds to the queries of the first type and tpi corresponds to the queries of the second type.

    It's guaranteed that the input will contains at least one query of the second type.

    Output

    For each query of the second type print the answer modulo 109 + 7.

    Examples
    input
    5 4
    1 1 2 1 1
    2 1 5
    1 2 4 2
    2 2 4
    2 1 5
    output
    5
    7
    9

    题意:

    两个操作,1是把这个区间里的数都加x,2是求这个区间的和函数和,函数是斐波那契数列;

    思路:

    显然是一个线段树的题,不过维护的是矩阵,具体的可以看题解,写的太挫,跑了2000+ms;

    AC代码:
    #include <bits/stdc++.h>
    #define lson o<<1
    #define rson o<<1|1
    using namespace std;
    typedef long long LL;
    const int maxn=1e5+10;
    const LL mod=1e9+7;
    LL a[maxn];
    struct matrix
    {
        LL a[2][2];
    };
    matrix add(matrix A,matrix B)
    {
        matrix C;
        for(int i=0;i<2;i++)
        {
            for(int j=0;j<2;j++)
            {
                C.a[i][j]=A.a[i][j]+B.a[i][j];
                if(C.a[i][j]>=mod)C.a[i][j]-=mod;
            }
        }
        return C;
    }
    matrix mul(matrix A,matrix B)
    {
        matrix C;
        for(int i=0;i<2;i++)
        {
            for(int j=0;j<2;j++)
            {
                C.a[i][j]=0;
                for(int k=0;k<2;k++)
                {
                    C.a[i][j]+=A.a[i][k]*B.a[k][j];
                    C.a[i][j]%=mod;
                }
            }
        }
        return C;
    }
    matrix pow_mod(LL x)
    {
        matrix s,base;
        s.a[0][0]=s.a[1][1]=1;s.a[0][1]=s.a[1][0]=0;
        base.a[0][0]=base.a[0][1]=base.a[1][0]=1;base.a[1][1]=0;
        while(x)
        {
            if(x&1)s=mul(s,base);
            base=mul(base,base);
            x>>=1;
        }
        return s;
    }
    
    struct Tree
    {
        int l,r,mark;
        matrix sum,fs;
    }tr[4*maxn];
    
    inline void pushup(int o)
    {
        tr[o].sum=add(tr[lson].sum,tr[rson].sum);
    }
    inline void pushdown(int o)
    {
        if(tr[o].mark)
        {
            tr[o].mark=0;tr[lson].mark=1;tr[rson].mark=1;
            tr[lson].sum=mul(tr[lson].sum,tr[o].fs);tr[rson].sum=mul(tr[rson].sum,tr[o].fs);
            tr[lson].fs=mul(tr[lson].fs,tr[o].fs);tr[rson].fs=mul(tr[rson].fs,tr[o].fs);
            tr[o].fs.a[0][0]=tr[o].fs.a[1][1]=1;tr[o].fs.a[1][0]=tr[o].fs.a[0][1]=0;
        }
    }
    void build(int o,int L ,int R)
    {
        tr[o].l=L;tr[o].r=R;tr[o].mark=0;
        tr[o].fs.a[0][0]=tr[o].fs.a[1][1]=1;tr[o].fs.a[0][1]=tr[o].fs.a[1][0]=0;
        if(L>=R)
        {
            tr[o].sum=pow_mod(a[L]);
            return ;
        }
        int mid=(L+R)>>1;
        build(lson,L,mid);
        build(rson,mid+1,R);
        pushup(o);
    }
    
    LL query(int o,int L,int R)
    {
        //cout<<o<<" "<<L<<" "<<R<<endl;
        if(L<=tr[o].l&&R>=tr[o].r)return tr[o].sum.a[0][0];
        int mid=(tr[o].l+tr[o].r)>>1;
        pushdown(o);
        LL ans=0;
        if(L<=mid)ans+=query(lson,L,R);
        if(R>mid)ans+=query(rson,L,R);
        pushup(o);
        return ans%mod;
    }
    
    void update(int o,int L,int R,matrix num)
    {
        if(L<=tr[o].l&&R>=tr[o].r)
        {
            tr[o].fs=mul(tr[o].fs,num);
            tr[o].mark=1;
            tr[o].sum=mul(tr[o].sum,num);
            return ;
        }
        pushdown(o);
        int mid=(tr[o].l+tr[o].r)>>1;
        if(L<=mid)update(lson,L,R,num);
        if(R>mid)update(rson,L,R,num);
        pushup(o);
    }
    int n,m;
    int main()
    {
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)scanf("%I64d",&a[i]),a[i]--;
        build(1,1,n);
        int op,u,v;
        LL temp;
        while(m--)
        {
            scanf("%d",&op);
            if(op==1)
            {
                scanf("%d%d%I64d",&u,&v,&temp);
                matrix num=pow_mod(temp);
                update(1,u,v,num);
            }
            else 
            {
                scanf("%d%d",&u,&v);
                printf("%I64d
    ",query(1,u,v));
            }
        }
        return 0;
    }
    

      

  • 相关阅读:
    稳扎稳打Silverlight(13) 2.0交互之鼠标事件和键盘事件
    稳扎稳打Silverlight(17) 2.0数据之详解DataGrid, 绑定数据到ListBox
    再接再厉VS 2008 sp1 + .NET 3.5 sp1(2) Entity Framework(实体框架)之详解 Linq To Entities 之一
    稳扎稳打Silverlight(8) 2.0图形之基类System.Windows.Shapes.Shape
    稳扎稳打Silverlight(11) 2.0动画之ColorAnimation, DoubleAnimation, PointAnimation, 内插关键帧动画
    稳扎稳打Silverlight(21) 2.0通信之WebRequest和WebResponse, 对指定的URI发出请求以及接收响应
    稳扎稳打Silverlight(16) 2.0数据之独立存储(Isolated Storage)
    稳扎稳打Silverlight(9) 2.0画笔之SolidColorBrush, ImageBrush, VideoBrush, LinearGradientBrush, RadialGradientBrush
    稳扎稳打Silverlight(23) 2.0通信之调用WCF的双向通信(Duplex Service)
    游戏人生Silverlight(1) 七彩俄罗斯方块[Silverlight 2.0(c#)]
  • 原文地址:https://www.cnblogs.com/zhangchengc919/p/5911293.html
Copyright © 2020-2023  润新知