题目链接:
Dertouzos
Time Limit: 7000/3500 MS (Java/Others)
Memory Limit: 131072/131072 K (Java/Others)
Problem Description
A positive proper divisor is a positive divisor of a number n, excluding n itself. For example, 1, 2, and 3 are positive proper divisors of 6, but 6 itself is not.
Peter has two positive integers n and d. He would like to know the number of integers below n whose maximum positive proper divisor is d.
Peter has two positive integers n and d. He would like to know the number of integers below n whose maximum positive proper divisor is d.
Input
There are multiple test cases. The first line of input contains an integer T (1≤T≤106), indicating the number of test cases. For each test case:
The first line contains two integers n and d (2≤n,d≤109).
The first line contains two integers n and d (2≤n,d≤109).
Output
For each test case, output an integer denoting the answer.
Sample Input
9
10 2
10 3
10 4
10 5
10 6
10 7
10 8
10 9
100 13
Sample Output
1
2
1
0
0
0
0
0
4
题意:
就是给一个n和一个d,问有多少个小于n的数的最大因子是d;
思路:
个数为min((n-1)/d,d')d'为d的最小质因子;
素数筛,然后枚举最小质因子,当时忘加一个条件最后测的时候t了;
AC代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> //#include <bits/stdc++.h> #include <stack> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++) #define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) { char CH; bool F=false; for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar()); for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar()); F && (num=-num); } int stk[70], tp; template<class T> inline void print(T p) { if(!p) { puts("0"); return; } while(p) stk[++ tp] = p%10, p/=10; while(tp) putchar(stk[tp--] + '0'); putchar(' '); } const LL mod=1e9+7; const double PI=acos(-1.0); const int inf=1e9; const int N=1e5+10; const int maxn=500+10; const double eps=1e-8; int prime[N],sum[N],a[N],cnt=0,n,d; void Init() { sum[1]=0; For(i,2,N-maxn) { if(!prime[i]) { for(int j=2*i;j<N-maxn;j+=i) { prime[j]=1; } sum[i]=sum[i-1]+1; } else sum[i]=sum[i-1]; } For(i,2,N-maxn) { if(!prime[i])a[++cnt]=i; } } inline int check(int x) { for(int i=1;i<=cnt;i++) { if(x%a[i]==0)return a[i]; if((LL)a[i]*a[i]>x||a[i]>n/d)break; } return x; } int main() { int t; read(t); Init(); while(t--) { read(n);read(d); n--; int le=min(check(d),n/d); printf("%d ",sum[le]); } return 0; }