题目链接:
Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's definef([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that ). You are given two integers nand k and n closed intervals [li, ri] on OX axis and you have to find:
In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.
As the answer may be very large, output it modulo 1000000007 (109 + 7).
Mike can't solve this problem so he needs your help. You will help him, won't you?
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.
Then n lines follow, the i-th line contains two integers li, ri ( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.
Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.
3 2
1 2
1 3
2 3
5
3 3
1 3
1 3
1 3
3
3 1
1 2
2 3
3 4
6
题意:
在n个区间里选k个,得到的f等于区间交的点数;求所有的选择方案的和;
思路:
对于每个点可以发现,当这个点被num个线段覆盖时,这个点就会被选C(num,k)次,ans=∑C(num,k);
但是区间很大,点的数目居多,所以不可能一个点一个点的这样算,可以发现,相邻的点如果被相同数目的线段覆盖,那么这些点就可以合并成一个区间,所以ans=∑len*C(num,k),len表示这个区间点的个数;看这个点被覆盖了多少次可以采用跟树状数组那样的方法,左右端点+-1;
AC代码:
//#include <bits/stdc++.h> #include <vector> #include <iostream> #include <queue> #include <cmath> #include <map> #include <cstring> #include <algorithm> #include <cstdio> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++) #define Riep(n) for(int i=1;i<=n;i++) #define Riop(n) for(int i=0;i<n;i++) #define Rjep(n) for(int j=1;j<=n;j++) #define Rjop(n) for(int j=0;j<n;j++) #define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) { char CH; bool F=false; for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar()); for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar()); F && (num=-num); } int stk[70], tp; template<class T> inline void print(T p) { if(!p) { puts("0"); return; } while(p) stk[++ tp] = p%10, p/=10; while(tp) putchar(stk[tp--] + '0'); putchar(' '); } const LL mod=1e9+7; const double PI=acos(-1.0); const LL inf=1e18; const int N=2e5+10; const int maxn=1005; const double eps=1e-10; int n,k,l[N],r[N]; LL dp[N]; map<int,int>mp; LL pow_mod(int x,LL y) { LL s=1,base=(LL)x; while(y) { if(y&1)s=s*base%mod; base=base*base%mod; y>>=1; } return s; } void Init() { dp[k]=1; For(i,k+1,N) { LL x=i,temp=pow_mod(x-k,mod-2); dp[i]=dp[i-1]*x%mod*temp%mod; } } vector<int>ve; int main() { read(n);read(k); Init(); For(i,1,n) { read(l[i]); mp[l[i]-1]++; ve.push_back(l[i]-1); read(r[i]); mp[r[i]]--; ve.push_back(r[i]); } sort(ve.begin(),ve.end()); LL ans=0; int num=0,prepo=-1e9-10; int w=ve.size(); for(int i=0;i<w;i++) { int tempo=ve[i],len=tempo-prepo; if(num>=k)ans=ans+dp[num]*(LL)len%mod,ans%=mod; if(prepo!=tempo) prepo=tempo,num+=mp[tempo]; } cout<<ans<<" "; return 0; }