题目链接:
E. Trains and Statistic
Vasya commutes by train every day. There are n train stations in the city, and at the i-th station it's possible to buy only tickets to stations from i + 1 to ai inclusive. No tickets are sold at the last station.
Let ρi, j be the minimum number of tickets one needs to buy in order to get from stations i to station j. As Vasya is fond of different useless statistic he asks you to compute the sum of all values ρi, j among all pairs 1 ≤ i < j ≤ n.
The first line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of stations.
The second line contains n - 1 integer ai (i + 1 ≤ ai ≤ n), the i-th of them means that at the i-th station one may buy tickets to each station from i + 1 to ai inclusive.
Print the sum of ρi, j among all pairs of 1 ≤ i < j ≤ n.
4
4 4 4
6
5
2 3 5 5
17
题意:
a[i]表示从第i个车站可以一张票到第[i+1,a[i]]这些车站;
p[i][j]表示从第i个车站到第j个车站的最少的票数,现在要求∑dp[i][j](1<=i<=n,i<j<=n);
思路:
dp[i]=∑p[i][j](i<j<=n);
转移方程为dp[i]=dp[temp]+(n-i)-(a[i]-temp);
其中temp表示[i+1,a[i]]中a[temp]最大的位置;
AC代码:
#include <bits/stdc++.h> using namespace std; #define Riep(n) for(int i=1;i<=n;i++) #define Riop(n) for(int i=0;i<n;i++) #define Rjep(n) for(int j=1;j<=n;j++) #define Rjop(n) for(int j=0;j<n;j++) #define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; const LL mod=1e9+7; const double PI=acos(-1.0); const int inf=0x3f3f3f3f; const int N=1e5+25; int n,a[N]; LL dp[N]; struct Tree { int l,r,ans; }tr[4*N]; void pushup(int o) { if(a[tr[2*o].ans]>a[tr[2*o+1].ans])tr[o].ans=tr[2*o].ans; else tr[o].ans=tr[2*o+1].ans; } void build(int o,int L,int R) { tr[o].l=L; tr[o].r=R; if(L==R) { tr[o].ans=L; return ; } int mid=(L+R)>>1; build(2*o,L,mid); build(2*o+1,mid+1,R); pushup(o); } int query(int o,int L,int R) { if(L<=tr[o].l&&R>=tr[o].r)return tr[o].ans; int mid=(tr[o].l+tr[o].r)>>1; if(R<=mid)return query(2*o,L,R); else if(L>mid)return query(2*o+1,L,R); else { int fl=query(2*o,L,mid),fr=query(2*o+1,mid+1,R); if(a[fl]>a[fr])return fl; else return fr; } } int main() { scanf("%d",&n); Riep(n-1)scanf("%d",&a[i]); a[n]=n-1; build(1,1,n); LL ans=0; dp[n]=0; for(int i=n-1;i>0;i--) { int temp=query(1,i+1,a[i]); dp[i]=dp[temp]+(LL)(n-i-(a[i]-temp)); ans+=dp[i]; } cout<<ans<<" "; return 0; }