• coeforces 665D D. Simple Subset(最大团orsb题)


    题目链接:

    D. Simple Subset

    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    A tuple of positive integers {x1, x2, ..., xk} is called simple if for all pairs of positive integers (i,  j) (1  ≤ i  <  j ≤ k), xi  +  xj is a prime.

    You are given an array a with n positive integers a1,  a2,  ...,  an (not necessary distinct). You want to find a simple subset of the array awith the maximum size.

    A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself.

    Let's define a subset of the array a as a tuple that can be obtained from a by removing some (possibly all) elements of it.

    Input
     

    The first line contains integer n (1 ≤ n ≤ 1000) — the number of integers in the array a.

    The second line contains n integers ai (1 ≤ ai ≤ 106) — the elements of the array a.

    Output
     

    On the first line print integer m — the maximum possible size of simple subset of a.

    On the second line print m integers bl — the elements of the simple subset of the array a with the maximum size.

    If there is more than one solution you can print any of them. You can print the elements of the subset in any order.

    Examples
     
    input
    2
    2 3
    output
    2
    3 2
    input
    2
    2 2
    output
    1
    2
    input
    3
    2 1 1
    output
    3
    1 1 2
    input
    2
    83 14
    output
    2
    14 83


    题意:

    选一个最大的子序列,满足这个序列里的任意两个数的和是素数;

    思路:

    可以是一个最大完全数的题,也可以是水题,因为奇数+奇数=偶数,偶数+偶数=偶数,(1除外);所以最多有一个奇数和一个偶数;
    我写的分情况讨论的代码真是跟翔一样;

    AC代码:

    #include <bits/stdc++.h>
    using namespace std;
    const int N=2e6+6;
    typedef long long ll;
    int n,a[1010],flag[N];
    int get_prime()
    {
        for(int i=2;i<N;i++)
        {
            if(!flag[i])
            {
                for(int j=2*i;j<N;j+=i)
                {
                    flag[j]=1;
                }
            }
        }
    }
    queue<int>qu;
    void print()
    {
        printf("%d
    ",qu.size());
        while(!qu.empty())
        {
            printf("%d ",qu.front());
            qu.pop();
        }
    }
    
    int main()
    {
        get_prime();
        int f=0;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            if(a[i]==1)
            {
                f++;
                qu.push(1);
            }
        }
        if(f>1)
        {
            for(int i=1;i<=n;i++)
            {
              if(a[i]>1&&!flag[a[i]+1])
              {
                  for(int j=i+1;j<=n;j++)
                  {
                      if(a[j]>1&&!flag[a[i]+a[j]]&&!flag[a[j]+1])
                      {
                          qu.push(a[i]);
                          qu.push(a[j]);
                          print();
                          return 0;
                      }
                  }
              }
            }
            for(int i=1;i<=n;i++)
            {
                if(a[i]>1&&!flag[a[i]+1])
                {
                    qu.push(a[i]);
                    print();
                    return 0;
                }
            }
            print();
        }
        else if(f==1)
        {
            for(int i=1;i<=n;i++)
            {
              if(a[i]>1&&!flag[a[i]+1])
              {
                  for(int j=i+1;j<=n;j++)
                  {
                      if(a[j]>1&&!flag[a[i]+a[j]]&&!flag[a[j]+1])
                      {
                          qu.push(a[i]);
                          qu.push(a[j]);
                          print();
                          return 0;
                      }
                  }
              }
            }
            for(int i=1;i<=n;i++)
            {
                if(a[i]>1)
                {
                    for(int j=i+1;j<=n;j++)
                    {
                        if(a[j]>1&&!flag[a[i]+a[j]])
                        {
                            printf("2
    ");
                            printf("%d %d",a[i],a[j]);
                            return 0;
                        }
                    }
                }
            }
            for(int i=1;i<=n;i++)
            {
                if(a[i]>1&&!flag[a[i]+1])
                {
                    qu.push(a[i]);
                    print();
                    return 0;
                }
            }
            print();
        }
        else
        {
            for(int i=1;i<=n;i++)
            {
                for(int j=i+1;j<=n;j++)
                {
                    if(!flag[a[i]+a[j]])
                    {
                        qu.push(a[i]);
                        qu.push(a[j]);
                        print();
                        return 0;
                    }
                }
            }
            printf("1
    ");
            printf("%d",a[1]);
    
        }
    
    
    
        return 0;
    }
  • 相关阅读:
    网站常见的反爬虫和应对方法
    网站反爬虫
    webmagic的设计机制及原理-如何开发一个Java爬虫
    腾讯社区搜索架构演进
    搜索引擎评估与互联网用户行为建设
    深层网络搜索核心技术研讨
    Solr与Cassandra二级缓存实践
    .NET的前世今生与将来
    技术人生的职场众生相
    爆栈之旅
  • 原文地址:https://www.cnblogs.com/zhangchengc919/p/5421033.html
Copyright © 2020-2023  润新知