• segmenter.go


    //Go中文分词
    package sego

    import (
        "bufio"
        "fmt"
        "log"
        "math"
        "os"
        "strconv"
        "strings"
        "unicode"
        "unicode/utf8"
    )

    const (
        minTokenFrequency = 2 // 仅从字典文件中读取大于等于此频率的分词
    )

    // 分词器结构体
    type Segmenter struct {
        dict *Dictionary
    }

    // 该结构体用于记录Viterbi算法中某字元处的向前分词跳转信息
    type jumper struct {
        minDistance float32
        token       *Token
    }

    // 返回分词器使用的词典
    func (seg *Segmenter) Dictionary() *Dictionary {
        return seg.dict
    }

    // 从文件中载入词典
    //
    // 可以载入多个词典文件,文件名用","分隔,排在前面的词典优先载入分词,比如
    //     "用户词典.txt,通用词典.txt"
    // 当一个分词既出现在用户词典也出现在通用词典中,则优先使用用户词典。
    //
    // 词典的格式为(每个分词一行):
    //    分词文本 频率 词性
    func (seg *Segmenter) LoadDictionary(files string) {
        seg.dict = NewDictionary()
        for _, file := range strings.Split(files, ",") {
            log.Printf("载入sego词典 %s", file)
            dictFile, err := os.Open(file)
            defer dictFile.Close()
            if err != nil {
                log.Fatalf("无法载入字典文件 "%s" 
    ", file)
            }

            reader := bufio.NewReader(dictFile)
            var text string
            var freqText string
            var frequency int
            var pos string

            // 逐行读入分词
            for {
                size, _ := fmt.Fscanln(reader, &text, &freqText, &pos)

                if size == 0 {
                    // 文件结束
                    break
                } else if size < 2 {
                    // 无效行
                    continue
                } else if size == 2 {
                    // 没有词性标注时设为空字符串
                    pos = ""
                }

                // 解析词频
                var err error
                frequency, err = strconv.Atoi(freqText)
                if err != nil {
                    continue
                }

                // 过滤频率太小的词
                if frequency < minTokenFrequency {
                    continue
                }

                // 将分词添加到字典中
                words := splitTextToWords([]byte(text))
                token := Token{text: words, frequency: frequency, pos: pos}
                seg.dict.addToken(token)
            }
        }

        // 计算每个分词的路径值,路径值含义见Token结构体的注释
        logTotalFrequency := float32(math.Log2(float64(seg.dict.totalFrequency)))
        for i := range seg.dict.tokens {
            token := &seg.dict.tokens[i]
            token.distance = logTotalFrequency - float32(math.Log2(float64(token.frequency)))
        }

        // 对每个分词进行细致划分,用于搜索引擎模式,该模式用法见Token结构体的注释。
        for i := range seg.dict.tokens {
            token := &seg.dict.tokens[i]
            segments := seg.segmentWords(token.text, true)

            // 计算需要添加的子分词数目
            numTokensToAdd := 0
            for iToken := 0; iToken < len(segments); iToken++ {
                if len(segments[iToken].token.text) > 1 {
                    // 略去字元长度为一的分词
                    // TODO: 这值得进一步推敲,特别是当字典中有英文复合词的时候
                    numTokensToAdd++
                }
            }
            token.segments = make([]*Segment, numTokensToAdd)

            // 添加子分词
            iSegmentsToAdd := 0
            for iToken := 0; iToken < len(segments); iToken++ {
                if len(segments[iToken].token.text) > 1 {
                    token.segments[iSegmentsToAdd] = &segments[iToken]
                    iSegmentsToAdd++
                }
            }
        }

        log.Println("sego词典载入完毕")
    }

    // 对文本分词
    //
    // 输入参数:
    //    bytes    UTF8文本的字节数组
    //
    // 输出:
    //    []Segment    划分的分词
    func (seg *Segmenter) Segment(bytes []byte) []Segment {
        return seg.internalSegment(bytes, false)
    }

    func (seg *Segmenter) internalSegment(bytes []byte, searchMode bool) []Segment {
        // 处理特殊情况
        if len(bytes) == 0 {
            return []Segment{}
        }

        // 划分字元
        text := splitTextToWords(bytes)

        return seg.segmentWords(text, searchMode)
    }

    func (seg *Segmenter) segmentWords(text []Text, searchMode bool) []Segment {
        // 搜索模式下该分词已无继续划分可能的情况
        if searchMode && len(text) == 1 {
            return []Segment{}
        }

        // jumpers定义了每个字元处的向前跳转信息,包括这个跳转对应的分词,
        // 以及从文本段开始到该字元的最短路径值
        jumpers := make([]jumper, len(text))

        tokens := make([]*Token, seg.dict.maxTokenLength)
        for current := 0; current < len(text); current++ {
            // 找到前一个字元处的最短路径,以便计算后续路径值
            var baseDistance float32
            if current == 0 {
                // 当本字元在文本首部时,基础距离应该是零
                baseDistance = 0
            } else {
                baseDistance = jumpers[current-1].minDistance
            }

            // 寻找所有以当前字元开头的分词
            numTokens := seg.dict.lookupTokens(
                text[current:minInt(current+seg.dict.maxTokenLength, len(text))], tokens)

            // 对所有可能的分词,更新分词结束字元处的跳转信息
            for iToken := 0; iToken < numTokens; iToken++ {
                location := current + len(tokens[iToken].text) - 1
                if !searchMode || current != 0 || location != len(text)-1 {
                    updateJumper(&jumpers[location], baseDistance, tokens[iToken])
                }
            }

            // 当前字元没有对应分词时补加一个伪分词
            if numTokens == 0 || len(tokens[0].text) > 1 {
                updateJumper(&jumpers[current], baseDistance,
                    &Token{text: []Text{text[current]}, frequency: 1, distance: 32, pos: "x"})
            }
        }

        // 从后向前扫描第一遍得到需要添加的分词数目
        numSeg := 0
        for index := len(text) - 1; index >= 0; {
            location := index - len(jumpers[index].token.text) + 1
            numSeg++
            index = location - 1
        }

        // 从后向前扫描第二遍添加分词到最终结果
        outputSegments := make([]Segment, numSeg)
        for index := len(text) - 1; index >= 0; {
            location := index - len(jumpers[index].token.text) + 1
            numSeg--
            outputSegments[numSeg].token = jumpers[index].token
            index = location - 1
        }

        // 计算各个分词的字节位置
        bytePosition := 0
        for iSeg := 0; iSeg < len(outputSegments); iSeg++ {
            outputSegments[iSeg].start = bytePosition
            bytePosition += textSliceByteLength(outputSegments[iSeg].token.text)
            outputSegments[iSeg].end = bytePosition
        }
        return outputSegments
    }

    // 更新跳转信息:
    //     1. 当该位置从未被访问过时(jumper.minDistance为零的情况),或者
    //    2. 当该位置的当前最短路径大于新的最短路径时
    // 将当前位置的最短路径值更新为baseDistance加上新分词的概率
    func updateJumper(jumper *jumper, baseDistance float32, token *Token) {
        newDistance := baseDistance + token.distance
        if jumper.minDistance == 0 || jumper.minDistance > newDistance {
            jumper.minDistance = newDistance
            jumper.token = token
        }
    }

    // 取两整数较小值
    func minInt(a, b int) int {
        if a > b {
            return b
        }
        return a
    }

    // 取两整数较大值
    func maxInt(a, b int) int {
        if a > b {
            return a
        }
        return b
    }

    // 将文本划分成字元
    func splitTextToWords(text Text) []Text {
        output := make([]Text, 0, len(text)/3)
        current := 0
        inAlphanumeric := true
        alphanumericStart := 0
        for current < len(text) {
            r, size := utf8.DecodeRune(text[current:])
            if size <= 2 && (unicode.IsLetter(r) || unicode.IsNumber(r)) {
                // 当前是拉丁字母或数字(非中日韩文字)
                if !inAlphanumeric {
                    alphanumericStart = current
                    inAlphanumeric = true
                }
            } else {
                if inAlphanumeric {
                    inAlphanumeric = false
                    if current != 0 {
                        output = append(output, toLower(text[alphanumericStart:current]))
                    }
                }
                output = append(output, text[current:current+size])
            }
            current += size
        }

        // 处理最后一个字元是英文的情况
        if inAlphanumeric {
            if current != 0 {
                output = append(output, toLower(text[alphanumericStart:current]))
            }
        }

        return output
    }

    // 将英文词转化为小写
    func toLower(text []byte) []byte {
        output := make([]byte, len(text))
        for i, t := range text {
            if t >= 'A' && t <= 'Z' {
                output[i] = t - 'A' + 'a'
            } else {
                output[i] = t
            }
        }
        return output
    }

  • 相关阅读:
    Design Thinking 设计思维
    SELECT小技巧
    网站架构
    代码生成器重构
    如何监控你的鼠标
    Asp.net超轻异步框架
    跨线程修改UI控件
    NPOI组件
    浅析Linux计算机工作机制
    VS2010单元测试
  • 原文地址:https://www.cnblogs.com/zhangboyu/p/7462003.html
Copyright © 2020-2023  润新知