题目:
Given an array of n integers where n > 1, nums
, return an array output
such that output[i]
is equal to the product of all the elements of nums
except nums[i]
.
Solve it without division and in O(n).
For example, given [1,2,3,4]
, return [24,12,8,6]
.
Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
思路:方法1.可以计算出所有元素的乘积product,如果该乘积不为0,则每个元素对应的为product/nums[i];如果为0,则不为0的元素,返回的均为0,为0的元素再遍历计算
方法2.维持两个数组, left[] and right[]. 分别记录 第i个元素 左边相加的和left[i] and 右边相加的和right[i]. 那么结果res[i]即为 left[i]+right[i]. follow up 要求O(1)空间. 利用返回的结果数组,先存right数组. 再从左边计算left,同时计算结果值, 这样可以不需要额外的空间. 这种算法比较好
代码1.
public class Solution { public int[] ProductExceptSelf(int[] nums) { int product = 1; for(int i = 0; i < nums.Length; i++) { product *= nums[i]; } int[] result = new int[nums.Length]; if(product != 0) { for(int i = 0; i < nums.Length; i++) { result[i] = product / nums[i]; } } else { for(int i = 0; i < nums.Length; i++) { if(nums[i] != 0) result[i] = 0; else { result[i] = 1; for(int j = 0; j < nums.Length; j++) { if(j != i) result[i] *= nums[j]; } } } } return result; } }
代码2.
public class Solution { public int[] productExceptSelf(int[] nums) { int[] res = new int[nums.Length]; res[res.Length-1] = 1; for(int i=nums.Length-2; i>=0; i--) { res[i] = res[i+1] * nums[i+1]; } int left = 1; for(int i=0; i<nums.Length; i++) { res[i] *= left; left *= nums[i]; } return res; } }