卷积神经网络
卷积神经⽹网络 卷积层:定义过滤器器(观察窗⼝口)⼤大⼩小, 步⻓长(移动的像素数量量)1 奇数 1*1, 3*3, 5*5
28,28,1
卷积层:32个filter, 3*3,步⻓长1, p=1
H2 = (28-3+ 2P)/1+1= 28 w2=(28-3+ 2P)/1+1 = 28 [27, 27, 32] relu 池化:[2,2] 2
增加激活函数:增加⽹网络的⾮非线性分割能⼒力力
sigmoid= 1/1+e^-z relu = max(0, x)
卷积层,激活,池化,全连接
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 定义一个初始化权重的函数 def weight_variables(shape): w = tf.Variable(tf.random_normal(shape=shape, mean=0.0, stddev=1.0)) return w # 定义一个初始化偏置的函数 def bias_variables(shape): b = tf.Variable(tf.constant(0.0, shape=shape)) return b def model(): """ 自定义的卷积模型 :return: """ # 1、准备数据的占位符 x [None, 784] y_true [None, 10] with tf.variable_scope("data"): x = tf.placeholder(tf.float32, [None, 784]) y_true = tf.placeholder(tf.int32, [None, 10]) # 2、一卷积层 卷积: 5*5*1,32个,strides=1 激活: tf.nn.relu 池化 with tf.variable_scope("conv1"): # 随机初始化权重, 偏置[32] w_conv1 = weight_variables([5, 5, 1, 32]) b_conv1 = bias_variables([32]) #对形状进行改变改变 x_reshape=tf.reshape(x,[-1,28,28,1]) x_relu1=tf.nn.relu(tf.nn.cov2d(x_reshape,w_conv1,strides=[1,1,1,1],padding="SAME")+b_conv1) #池化 x_pool1=tf.nn.max_pool(x_relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME") with tf.variable_scope("conv2"): w_conv2=weight_variables([5,5,32,64]) b_conv2=bias_variables([64]) #卷积 激活 池化计算 x_relu2=tf.nn.relu(tf.nn.conv2d(x_pool1,w_conv2,strides=[1,1,1,1],padding="SAME")+b_conv2) x_pool2 = tf.nn.max_pool(x_relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") with tf.variable_scope("conv2"): # 随机初始化权重和偏置 w_fc = weight_variables([7 * 7 * 64, 10]) b_fc = bias_variables([10]) # 修改形状 [None, 7, 7, 64] --->None, 7*7*64] x_fc_reshape = tf.reshape(x_pool2, [-1, 7 * 7 * 64]) # 进行矩阵运算得出每个样本的10个结果 y_predict = tf.matmul(x_fc_reshape, w_fc) + b_fc return x, y_true, y_predict def conv_fc(): # 获取真实的数据 mnist = input_data.read_data_sets("./data/mnist/input_data/", one_hot=True) # 定义模型,得出输出 x, y_true, y_predict = model() # 进行交叉熵损失计算 # 3、求出所有样本的损失,然后求平均值 with tf.variable_scope("soft_cross"): # 求平均交叉熵损失 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_predict)) # 4、梯度下降求出损失 with tf.variable_scope("optimizer"): train_op = tf.train.GradientDescentOptimizer(0.0001).minimize(loss) # 5、计算准确率 with tf.variable_scope("acc"): equal_list = tf.equal(tf.argmax(y_true, 1), tf.argmax(y_predict, 1)) # equal_list None个样本 [1, 0, 1, 0, 1, 1,..........] accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32)) # 定义一个初始化变量的op init_op = tf.global_variables_initializer() # 开启回话运行 with tf.Session() as sess: sess.run(init_op) # 循环去训练 for i in range(1000): # 取出真实存在的特征值和目标值 mnist_x, mnist_y = mnist.train.next_batch(50) # 运行train_op训练 sess.run(train_op, feed_dict={x: mnist_x, y_true: mnist_y}) print("训练第%d步,准确率为:%f" % (i, sess.run(accuracy, feed_dict={x: mnist_x, y_true: mnist_y}))) return None if __name__ == "__main__": conv_fc()