• 学习十


    卷积神经网络

    卷积神经⽹网络 卷积层:定义过滤器器(观察窗⼝口)⼤大⼩小, 步⻓长(移动的像素数量量)1 奇数 1*1, 3*3, 5*5
    28,28,1
    卷积层:32个filter, 3*3,步⻓长1, p=1
    H2 = (28-3+ 2P)/1+1= 28 w2=(28-3+ 2P)/1+1 = 28 [27, 27, 32] relu 池化:[2,2] 2
    增加激活函数:增加⽹网络的⾮非线性分割能⼒力力
    sigmoid= 1/1+e^-z relu = max(0, x)
    卷积层,激活,池化,全连接

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    # 定义一个初始化权重的函数
    def weight_variables(shape):
        w = tf.Variable(tf.random_normal(shape=shape, mean=0.0, stddev=1.0))
        return w
    
    
    # 定义一个初始化偏置的函数
    def bias_variables(shape):
        b = tf.Variable(tf.constant(0.0, shape=shape))
        return b
    
    
    def model():
        """
        自定义的卷积模型
        :return:
        """
        # 1、准备数据的占位符 x [None, 784]  y_true [None, 10]
        with tf.variable_scope("data"):
            x = tf.placeholder(tf.float32, [None, 784])
    
            y_true = tf.placeholder(tf.int32, [None, 10])
    
        # 2、一卷积层 卷积: 5*5*1,32个,strides=1 激活: tf.nn.relu 池化
        with tf.variable_scope("conv1"):
            # 随机初始化权重, 偏置[32]
            w_conv1 = weight_variables([5, 5, 1, 32])
    
            b_conv1 = bias_variables([32])
    
            #对形状进行改变改变
            x_reshape=tf.reshape(x,[-1,28,28,1])
            x_relu1=tf.nn.relu(tf.nn.cov2d(x_reshape,w_conv1,strides=[1,1,1,1],padding="SAME")+b_conv1)
            #池化
            x_pool1=tf.nn.max_pool(x_relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME")
        with tf.variable_scope("conv2"):
            w_conv2=weight_variables([5,5,32,64])
            b_conv2=bias_variables([64])
    
            #卷积 激活 池化计算
            x_relu2=tf.nn.relu(tf.nn.conv2d(x_pool1,w_conv2,strides=[1,1,1,1],padding="SAME")+b_conv2)
    
            x_pool2 = tf.nn.max_pool(x_relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
    
        with tf.variable_scope("conv2"):
    
            # 随机初始化权重和偏置
            w_fc = weight_variables([7 * 7 * 64, 10])
    
            b_fc = bias_variables([10])
    
            # 修改形状 [None, 7, 7, 64] --->None, 7*7*64]
            x_fc_reshape = tf.reshape(x_pool2, [-1, 7 * 7 * 64])
    
            # 进行矩阵运算得出每个样本的10个结果
            y_predict = tf.matmul(x_fc_reshape, w_fc) + b_fc
    
        return x, y_true, y_predict
    
    def conv_fc():
        # 获取真实的数据
        mnist = input_data.read_data_sets("./data/mnist/input_data/", one_hot=True)
    
        # 定义模型,得出输出
        x, y_true, y_predict = model()
    
        # 进行交叉熵损失计算
        # 3、求出所有样本的损失,然后求平均值
        with tf.variable_scope("soft_cross"):
            # 求平均交叉熵损失
            loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_predict))
    
        # 4、梯度下降求出损失
        with tf.variable_scope("optimizer"):
            train_op = tf.train.GradientDescentOptimizer(0.0001).minimize(loss)
    
        # 5、计算准确率
        with tf.variable_scope("acc"):
            equal_list = tf.equal(tf.argmax(y_true, 1), tf.argmax(y_predict, 1))
    
            # equal_list  None个样本   [1, 0, 1, 0, 1, 1,..........]
            accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32))
    
        # 定义一个初始化变量的op
        init_op = tf.global_variables_initializer()
    
        # 开启回话运行
        with tf.Session() as sess:
            sess.run(init_op)
    
            # 循环去训练
            for i in range(1000):
    
                # 取出真实存在的特征值和目标值
                mnist_x, mnist_y = mnist.train.next_batch(50)
    
                # 运行train_op训练
                sess.run(train_op, feed_dict={x: mnist_x, y_true: mnist_y})
    
                print("训练第%d步,准确率为:%f" % (i, sess.run(accuracy, feed_dict={x: mnist_x, y_true: mnist_y})))
    
    
        return None
    
    
    if __name__ == "__main__":
        conv_fc()
  • 相关阅读:
    python——remove,del,pop三种删除元素方式的区别
    python——random.sample()的用法
    python的unittest框架中的assert断言
    python-unittest环境下单独运行一个用例的方法
    极简教程:数据结构与算法(一)
    总结:js世界中的特殊符号
    免费 https 申请步骤,你必须知道
    Uri编码,包括javascript前端与C#服务器端
    IIS中发布后出现Could not load file or assembly'System.Data.SQLite.dll' or one of its depedencies
    C# 程序关闭和进程关闭
  • 原文地址:https://www.cnblogs.com/zhang12345/p/13073081.html
Copyright © 2020-2023  润新知