• 论文-Multi-view Convolutional Neural Networks for 3D Shape Recognition


    Multi-view Convolutional Neural Networks for 3D Shape Recognition 

    面对3D 模型, 想要识别3D模型,想要识别该3D模型,将目前最热的CNN使用上去,并且首次提出了识别3D模型的CNN网络。

    方法是:将3D模型渲染成为一系列的2D images, 实验证明,使用CNN的时候,一系列的2D images 带来的信息比3D 模型识别的效果更好。


    整个模型为:

     

    针对一个3D shape model,利用不同的角度,将其渲染成多张 image,利用多张image,同时传入多个CNN的前部分,即是多个Conv层(Relu), 每一个角度都可以得到一个feature map。

    中间的是本paper新增加的一种layer, view-pooling layer,在本paper 中,使用element-wise maximum, 就是对feature map的每一个element,进行pixel级别的取最大操作。 这样多个feature map最终被pooling成一个feature map。View-pooling layers 有点类似max-pooling layers 或maxout layers.

    这个算法的精华是: 利用多个Conv(Relu) 层对多个输入的images进行feature selective,选择最active的feature,这样在view-pooling 起来,继续 CNN 的后半部分的网络。

    角度选择:

    (1), 12个角度,水平对一个物体进行渲染,选择围绕物体,每30度产生一张image;

    (2), 利用正二十面体的形状,对每一个点以0,90, 180,270度的角度去渲染,一共可以产生80张image。

     总结:

     多个角度的image, 提供多个不同的feature。

  • 相关阅读:
    遇到屏蔽selenium的站点如何突破
    subprocess.Popen stdout重定向内容实时获取
    thinkphp Composer安装指南
    职场片
    php。。。
    多线程相关
    狂刷1000题~~2
    狂刷1000题~~1
    关于eclipse中看不到源码的问题
    一篇看懂++i i++
  • 原文地址:https://www.cnblogs.com/zhang-yd/p/6533028.html
Copyright © 2020-2023  润新知