• Flink的特点和优点


    1、同时支持事件时间和处理时间语义。事件时间语义能够针对无序事件提供精确、一致的结果;处理时间语义能够用在具有极低延迟需求的应用中。

    2、提供精确一次(exactly once)的状态一致性保障。

    3、层次化的API在表达能力和易用性方面各有权衡。表达能力由强到弱(易用性由弱到强)依次是:ProcessFunction、DataStream API、SQL/Table API。

    Flink API提供了通用的流操作原语(如窗口划分和异步操作)以及精确控制时间和状态的接口。

    4、提供常见存储系统的连接器,Kafka,Elasticsearch,JDBC

    5、checkpoint和savepoint

    6、支持高可用性配置(无单点失效),与k8s、Yarn、Apache Mesos紧密集成,快速故障恢复,动态扩缩容作业。

    7、提供详细、可自由定制的系统及应用指标(metrics)集合,用于提前定位和响应问题。

    8、社区正在努力将Flink发展成为在API及运行时层面都能做到批流统一。

    9、对开发者友好,Flink的嵌入式执行模式可将应用自身连同整个Flink系统在单个JVM进程内启动,方便在IDE里运行和调试Flink作业

    reference:

    1 《Stream Processing with Apache Flink》

  • 相关阅读:
    NetCore DockerDesktop 踩坑记录
    VS2019 docker desktop 调试 vsdbg下载出错。
    Git 操作
    SQLServer远程连接失败的问题
    Echarts dataZoom缩放功能参数详解:
    flex布局
    解决vue项目中使用/deep/报错
    vue上传图片或文件
    github连接超时,经常打不开的问题
    vue2.0与vue3.0 双向数据绑定的理解
  • 原文地址:https://www.cnblogs.com/zgq25302111/p/12258371.html
Copyright © 2020-2023  润新知