• To the Max 二维dp(一维的变形)


    Description

    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
    As an example, the maximal sub-rectangle of the array: 

    0 -2 -7 0 
    9 2 -6 2 
    -4 1 -4 1 
    -1 8 0 -2 
    is in the lower left corner: 

    9 2 
    -4 1 
    -1 8 
    and has a sum of 15. 

    Input

    The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

    Output

    Output the sum of the maximal sub-rectangle.

    Sample Input

    4
    0 -2 -7 0 9 2 -6 2
    -4 1 -4  1 -1
    
    8  0 -2

    Sample Output

    15

    题解:

    看起来很难做的题目,但他让我们想起 最大字段和,但那个是一维的。

    那怎么转化二维为1维呢?

    当然是枚举了。

    分别枚举第 i 行到第 j 行 ,这里的复杂度为O(n^2),然后在用字段和遍历一遍,所以总的时间复杂度为O(n^3) 考虑到n不大,可行。

    有一个问题是怎么最快求第k列中,第 i 行道第 j 行的和,我们采用前缀和的方式。

    由于网上多是行前缀和,这里贴一个列前缀和的代码

    #include<stdio.h>
    #include<cmath>
    #include<iostream>
    #define INF 0x3f3f3f3f
    #define me(a,b) memset(a,b,sizeof(a))
    #define N 102
    typedef long long ll;
    using namespace std;
    
    int n,a[N][N],dp[N][N],t,sum,ans;
    
    int main()
    {
          //freopen("input.txt","r",stdin);
          cin>>n;
          for(int i=1;i<=n;i++)
          {
                for(int j=1;j<=n;j++)
                {
                      cin>>t;
                      a[i][j]=a[i][j-1]+t;//记录前缀和
                }
          }
          for(int i=1;i<=n;i++)
          {
                for(int j=i;j<=n;j++) //枚举,第i列道第j列
                {
                      sum=0;
                      for(int k=1;k<=n;k++)//最大子序列遍历一遍
                      {
                            int t=a[k][j]-a[k][i-1];//t代表: 第k行中,第 i 列到第 j 列的和
                            sum+=t;
                            sum=sum<0?0:sum; //<0则置为0
                            if(sum>ans)
                                  ans=sum;
                      }
                }
          }
          cout<<ans;
    
    }





  • 相关阅读:
    dotnet core 使用 MongoDB 进行高性能Nosql数据库操作
    Google C++测试框架系列:入门
    leetcode解答索引一期工程:1
    Google+团队如何测试移动应用
    Google C++测试框架系列入门篇:第三章 基本概念
    Google C++测试框架系列入门篇:第二章 开始一个新项目
    Google C++测试框架系列高级篇:第二章 让GTest学习打印自定义对象
    Google C++测试框架系列入门篇:第一章 介绍:为什么使用GTest?
    leetcode: Jump Game II
    Google C++测试框架系列高级篇:第一章 更多关于断言的知识
  • 原文地址:https://www.cnblogs.com/zgncbsylm/p/10634478.html
Copyright © 2020-2023  润新知