• Conscription POJ


    Windy has a country, and he wants to build an army to protect his country. He has picked up N girls and M boys and wants to collect them to be his soldiers. To collect a soldier without any privilege, he must pay 10000 RMB. There are some relationships between girls and boys and Windy can use these relationships to reduce his cost. If girl x and boy y have a relationship d and one of them has been collected, Windy can collect the other one with 10000-d RMB. Now given all the relationships between girls and boys, your assignment is to find the least amount of money Windy has to pay. Notice that only one relationship can be used when collecting one soldier.

    Input

    The first line of input is the number of test case.
    The first line of each test case contains three integers, N, M and R.
    Then R lines followed, each contains three integers xi, yi and di.
    There is a blank line before each test case.

    1 ≤ N, M ≤ 10000
    0 ≤ R ≤ 50,000
    0 ≤ xi < N
    0 ≤ yi < M
    0 < di < 10000

    Output

    For each test case output the answer in a single line.

    Sample Input

    2
    
    5 5 8
    4 3 6831
    1 3 4583
    0 0 6592
    0 1 3063
    3 3 4975
    1 3 2049
    4 2 2104
    2 2 781
    
    5 5 10
    2 4 9820
    3 2 6236
    3 1 8864
    2 4 8326
    2 0 5156
    2 0 1463
    4 1 2439
    0 4 4373
    3 4 8889
    2 4 3133
    

    Sample Output

    71071
    54223
    
    题解:让我们设想一下这样的一个无向图:在征募某个人a时,如果使用了a和b之间的关系,那么就连一条a到b的边。假设这个图存在圈,那么无论以什么样的顺序征募这个圈上所有的人,都会产生矛盾
    ,因此可以知道这个图是一片森林。反之,如果给了一片森林就可以使用对应的关系确定征募的顺序。因此把人看作顶点,关系看作边,那么这个问题就可以转化为求解无向图中的最大权森林问题,也就
    是把所有边权取反之后用最小生成树算法求解。
    --------------------------------------摘自《挑战程序设计竞赛》

     1 #include<cstdio>
     2 #include<cstring>
     3 #include<iostream>
     4 #include<algorithm>
     5 using namespace std;
     6 typedef long long ll;
     7 
     8 const int maxn=50005;
     9 
    10 struct edge{
    11     int u,v,cost;
    12     bool operator<(const edge& i)const{
    13         return cost<i.cost;
    14     }
    15 };
    16 
    17 edge es[maxn];
    18 int n,m,R,F[maxn];
    19 
    20 int Find(int a){
    21     if(a!=F[a]) F[a]=Find(F[a]);
    22     return F[a];
    23 }
    24 
    25 bool unite(int a,int b){
    26     int x=Find(a),y=Find(b);
    27     if(x!=y) { F[x]=y; return true; }
    28     else return false;
    29 } 
    30 
    31 int Kruskal(){
    32     sort(es,es+R);
    33     int ans=0;
    34     for(int i=0;i<R;i++){
    35         edge e=es[i];
    36         if(unite(e.u,e.v)) ans=ans+e.cost;
    37     }
    38     return ans;
    39 }
    40 
    41 int main()
    42 {   int kase;
    43     cin>>kase;
    44     while(kase--){
    45         cin>>n>>m>>R;
    46         int x,y,most;
    47         for(int i=0;i<R;i++){
    48             scanf("%d%d%d",&x,&y,&most);
    49             es[i]=(edge){x,y+n,-most};
    50         }
    51         for(int i=0;i<n+m;i++) F[i]=i;
    52         int ans=10000*(n+m)+Kruskal();
    53         cout<<ans<<endl;
    54     }
    55     return 0;
    56 }
  • 相关阅读:
    重写方法,重载方法,虚方法和抽象方法的使用
    基类和派生类
    C#修饰符讲解大全
    通过HTTP请求WEBAPI的方式
    计算机各种协议讲解
    时间戳
    SQL Server知识详解
    基本概念和术语
    22.C++- 继承与组合,protected访问级别
    22.QT-QXmlStreamReader解析,QXmlStreamWriter写入
  • 原文地址:https://www.cnblogs.com/zgglj-com/p/7348290.html
Copyright © 2020-2023  润新知