• leetcode || 53、Maximum Subarray


    problem:

    Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

    For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
    the contiguous subarray [4,−1,2,1] has the largest sum = 6.

    click to show more practice.

    More practice:

    If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

    Hide Tags
     Divide and Conquer Array Dynamic Programming
    题意:找出一个序列的最大和连续子序列

    thinking:

    (1)这道题解法特别多:

    方法1:将每个数和后一个数字相加,得到一个正负分布的序列,正数项对最大和子序列实用,作比較就可以

    方法2:暴力匹配,两层循环,调用max()函数。时间复杂度O(n*n),也能够算出结果,可是提交超时

    方法3:採用DP。时间复杂度O(n)

    方法4:分治法。时间复杂度为nlog(n)

    (2)本人实现了方法3 和方法4


    code:

    DP 法:

    class Solution {
    public:
        int maxSubArray(int A[], int n) {
            int sum=A[0];
            int maxsum=A[0];
            for(int i=1;i<n;i++)
            {
                if(sum<0)    //DP核心
                    sum=0;
                sum+=A[i];
                maxsum=max(sum,maxsum);
            }
            return maxsum;
        }
    
    
    };

    分治法:

    class Solution {
    public:
        int maxSubArray(int A[], int n) {
            int ret=maxsub(A,0,n-1);
            return ret;
    
        }
    protected:
        int maxsub(int A[], int start, int end)
        {
            int max_left=INT_MIN,max_mid=INT_MIN,max_right=INT_MIN;
            if(start==end)
                return A[start];
            if(start+1==end)
            {
                int a=max(A[start],A[end]);
                return a>(A[start]+A[end])?a:(A[start]+A[end]);
            }
            int mid=(start+end)/2;
            int tmp_sum=A[mid];
            max_mid=tmp_sum;
           
            int i=mid-1;
            int j=mid+1;
            while(i>=start)  //难点在于当连续最大和子序列分布在mid的一側或两側时,怎么处理
            {
                
                tmp_sum+=A[i];
                i--;
                max_mid=max(max_mid,tmp_sum);
                
            }
            if(max_mid>A[mid])  //推断是处于两側,还是处于一側
                tmp_sum=max_mid;
            else
                tmp_sum=A[mid];
            while(j<=end)
            {
                
                tmp_sum+=A[j];
                j++;
                max_mid=max(max_mid,tmp_sum);
                
            }
            
            max_left=max(max_left,maxsub(A,start,mid-1));//二分轮廓
            max_right=max(max_right,maxsub(A,mid+1,end));
            int tmp_max = max(max_left,max_right);
            return max_mid>tmp_max?max_mid:tmp_max;
        }
    
    
    };


  • 相关阅读:
    cvpr热词云
    第八周总结
    从小工到专家阅读笔记01
    【Spring实战4】10--搭建SpringMVC环境
    【Spring实战4】09---构建Spring web
    【Spring实战4】08---面向切面AOP
    读书
    【Spring实战4】07---Bean的作用域
    【Spring实战4】06---装配Bean(xml)
    【Spring实战4】05---装配Bean(Java)
  • 原文地址:https://www.cnblogs.com/zfyouxi/p/5352398.html
Copyright © 2020-2023  润新知