本文为senlie原创。转载请保留此地址:http://blog.csdn.net/zhengsenlie
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
题意:给定一个 m * n 的网格,一个机器人要从左上角走到右下角,每次仅仅能向下或向右移动一个位置。
问有多少种走法
思路1:dfs暴力枚举
复杂度:超时了... O(2^n)
思路2:记忆化搜索
用一个数组paths[i][j]记录从 (0,0) 到 (m,n)的路径数
思路3:dp
设置状态为f[i][j],表示从(0,0)到达网格(i,j)的路径数,则状态转移方程为
f[i][j] = f[i - 1][j] + f[i][j - 1]
复杂度:时间O(n^2) 空间 O(n)
<pre name="code" class="cpp">//思路1 int uniquePaths(int m, int n){ if(m < 0 || n < 0) return 0; if(m == 1 && n == 1) return 1; return uniquePaths(m - 1, n) + uniquePaths(m, n - 1); } //思路2 //paths[i][j]表示从(0,0)到(i,j)的路径数 int paths[101][101]; int dfs(int m, int n){ if(m < 0 || n < 0) return 0; if(m == 1 && n == 1) return 1; if(paths[m][n] >= 0) return paths[m][n]; return paths[m][n] = dfs(m - 1, n) + dfs(m, n - 1); } int uniquePaths(int m, int n){ memset(paths, -1, sizeof(paths)); return dfs(m, n); } //思路2还有一种写法 //paths[i][j]表示从(i,j)到(m - 1,n - 1)的路径数 int paths[101][101]; int mm, nn; int dfs(int x, int y){ if(x >= mm || y >= nn) return 0; if(x == mm - 1 && y == nn - 1) return 1; if(paths[x][y] >= 0) return paths[x][y]; return paths[x][y] = dfs(x + 1, y) + dfs(x, y + 1); } int uniquePaths(int m, int n){ mm = m, nn = n; memset(paths, -1, sizeof(paths)); return dfs(0, 0); } //思路3 paths[i][j] 表示(0, 0) 到(i,j)的路径数 int paths[101][101]; int uniquePaths(int m, int n){ memset(paths, 0, sizeof(paths)); for(int i = 0; i < m; ++i) paths[i][0] = 1; for(int j = 0; j < n; ++j) paths[0][j] = 1; for(int i = 1 ; i < m; ++i){ for(int j = 1; j < n; ++j){ paths[i][j] = paths[i - 1][j] + paths[i][j - 1]; } } return paths[m - 1][n - 1]; } 思路3 还有一种写法 用一个一维数组 paths[j] 表示 (0, 0) 至 (i, j)的路径数,在外循环变量为 i 时,还没更新前 paths[j] 相应上面二维数组写法的paths[i - 1, j],paths[j - 1]相应paths[i][j - 1] int paths[101]; int uniquePaths(int m, int n){ memset(paths, 0, sizeof(paths)); paths[0] = 1; for(int i = 0; i < m; ++i){ for(int j = 1; j < n; ++j){ paths[j] = paths[j] + paths[j - 1]; } } return paths[n - 1]; }