• 【机器学习】Softmax 和Logistic Regression回归Sigmod


     二分类问题Sigmod

      在 logistic 回归中,我们的训练集由 	extstyle m 个已标记的样本构成:{ (x^{(1)}, y^{(1)}), ldots, (x^{(m)}, y^{(m)}) } ,其中输入特征x^{(i)} in Re^{n+1}。(我们对符号的约定如下:特征向量 	extstyle x 的维度为 	extstyle n+1,其中 	extstyle x_0 = 1 对应截距项 。) 由于 logistic 回归是针对二分类问题的,因此类标记 y^{(i)} in {0,1}。假设函数(hypothesis function) 如下:

    egin{align}
h_	heta(x) = frac{1}{1+exp(-	heta^Tx)},
end{align}

    我们将训练模型参数 	extstyle 	heta,使其能够最小化代价函数 :

    
egin{align}
J(	heta) = -frac{1}{m} left[ sum_{i=1}^m y^{(i)} log h_	heta(x^{(i)}) + (1-y^{(i)}) log (1-h_	heta(x^{(i)})) 
ight]
end{align}

    多分类问题

       在一个多分类问题中,因变量y有k个取值,即。例如在邮件分类问题中,我们要把邮件分为垃圾邮件、个人邮件、工作邮件3类,目标值y是一个有3个取值的离散值。这是一个多分类问题,二分类模型在这里不太适用。

      主要应用就是多分类,sigmoid函数只能分两类,而softmax能分多类,softmax是sigmoid的扩展。

      Logistic函数只能被使用在二分类问题中,但是它的多项式回归,即softmax函数,可以解决多分类问题。

      在 softmax回归中,我们解决的是多分类问题(相对于 logistic 回归解决的二分类问题),类标 	extstyle y 可以取 	extstyle k 个不同的值(而不是 2 个)。因此,对于训练集 { (x^{(1)}, y^{(1)}), ldots, (x^{(m)}, y^{(m)}) },我们有 y^{(i)} in {1, 2, ldots, k}。(注意此处的类别下标从 1 开始,而不是 0) 

      对于给定的测试输入 	extstyle x,我们想用假设函数针对每一个类别j估算出概率值 	extstyle p(y=j | x)。也就是说,我们想估计 	extstyle x 的每一种分类结果出现的概率。因此,我们的假设函数将要输出一个 	extstyle k 维的向量(向量元素的和为1)来表示这 	extstyle k 个估计的概率值。 具体地说,我们的假设函数 	extstyle h_{	heta}(x) 形式如下:

    
egin{align}
h_	heta(x^{(i)}) =
egin{bmatrix}
p(y^{(i)} = 1 | x^{(i)}; 	heta) \
p(y^{(i)} = 2 | x^{(i)}; 	heta) \
vdots \
p(y^{(i)} = k | x^{(i)}; 	heta)
end{bmatrix}
=
frac{1}{ sum_{j=1}^{k}{e^{ 	heta_j^T x^{(i)} }} }
egin{bmatrix}
e^{ 	heta_1^T x^{(i)} } \
e^{ 	heta_2^T x^{(i)} } \
vdots \
e^{ 	heta_k^T x^{(i)} } \
end{bmatrix}
end{align}


      其中 	heta_1, 	heta_2, ldots, 	heta_k in Re^{n+1} 是模型的参数。请注意 frac{1}{ sum_{j=1}^{k}{e^{ 	heta_j^T x^{(i)} }} } 这一项对概率分布进行归一化,使得所有概率之和为 1 。


      为了方便起见,我们同样使用符号 	extstyle 	heta 来表示全部的模型参数。在实现Softmax回归时,将 	extstyle 	heta 用一个 	extstyle k 	imes(n+1) 的矩阵来表示会很方便,该矩阵是将 	heta_1, 	heta_2, ldots, 	heta_k 按行罗列起来得到的,如下所示:

    
	heta = egin{bmatrix}
mbox{---} 	heta_1^T mbox{---} \
mbox{---} 	heta_2^T mbox{---} \
vdots \
mbox{---} 	heta_k^T mbox{---} \
end{bmatrix}

    代价函数

    	extstyle 1{ 值为假的表达式 	extstyle }=0。举例来说,表达式 	extstyle 1{2+2=4} 的值为1 ,	extstyle 1{1+1=5}的值为 0。我们的代价函数为:

    
egin{align}
J(	heta) = - frac{1}{m} left[ sum_{i=1}^{m} sum_{j=1}^{k}  1left{y^{(i)} = j
ight} log frac{e^{	heta_j^T x^{(i)}}}{sum_{l=1}^k e^{ 	heta_l^T x^{(i)} }}
ight]
end{align}


    值得注意的是,上述公式是logistic回归代价函数的推广。logistic回归代价函数可以改为:

    
egin{align}
J(	heta) &= -frac{1}{m} left[ sum_{i=1}^m   (1-y^{(i)}) log (1-h_	heta(x^{(i)})) + y^{(i)} log h_	heta(x^{(i)}) 
ight] \
&= - frac{1}{m} left[ sum_{i=1}^{m} sum_{j=0}^{1} 1left{y^{(i)} = j
ight} log p(y^{(i)} = j | x^{(i)} ; 	heta) 
ight]
end{align}


    可以看到,Softmax代价函数与logistic 代价函数在形式上非常类似,只是在Softmax损失函数中对类标记的 k 个可能值进行了累加。注意在Softmax回归中将 x 分类为类别 	extstyle j 的概率为:

    
p(y^{(i)} = j | x^{(i)} ; 	heta) = frac{e^{	heta_j^T x^{(i)}}}{sum_{l=1}^k e^{ 	heta_l^T x^{(i)}} }
.


    对于 	extstyle J(	heta) 的最小化问题,目前还没有闭式解法。因此,我们使用迭代的优化算法(例如梯度下降法,或 L-BFGS)。经过求导,我们得到梯度公式如下:

    
egin{align}

abla_{	heta_j} J(	heta) = - frac{1}{m} sum_{i=1}^{m}{ left[ x^{(i)} left( 1{ y^{(i)} = j}  - p(y^{(i)} = j | x^{(i)}; 	heta) 
ight) 
ight]  }
end{align}


    让我们来回顾一下符号 "	extstyle 
abla_{	heta_j}" 的含义。	extstyle 
abla_{	heta_j} J(	heta) 本身是一个向量,它的第 	extstyle l 个元素 	extstyle frac{partial J(	heta)}{partial 	heta_{jl}} 是 	extstyle J(	heta)	extstyle 	heta_j 的第 	extstyle l 个分量的偏导数。


    有了上面的偏导数公式以后,我们就可以将它代入到梯度下降法等算法中,来最小化 	extstyle J(	heta)。 例如,在梯度下降法的标准实现中,每一次迭代需要进行如下更新: 	extstyle 	heta_j := 	heta_j - alpha 
abla_{	heta_j} J(	heta)(	extstyle j=1,ldots,k)。

    当实现 softmax 回归算法时, 我们通常会使用上述代价函数的一个改进版本。

    Softmax回归与Logistic 回归的关系

    当类别数 	extstyle k = 2 时,softmax 回归退化为 logistic 回归。这表明 softmax 回归是 logistic 回归的一般形式。具体地说,当 	extstyle k = 2 时,softmax 回归的假设函数为:

    
egin{align}
h_	heta(x) &=

frac{1}{ e^{	heta_1^Tx}  + e^{ 	heta_2^T x^{(i)} } }
egin{bmatrix}
e^{ 	heta_1^T x } \
e^{ 	heta_2^T x }
end{bmatrix}
end{align}


    利用softmax回归参数冗余的特点,我们令 	extstyle psi = 	heta_1,并且从两个参数向量中都减去向量 	extstyle 	heta_1,得到:

    
egin{align}
h(x) &=

frac{1}{ e^{vec{0}^Tx}  + e^{ (	heta_2-	heta_1)^T x^{(i)} } }
egin{bmatrix}
e^{ vec{0}^T x } \
e^{ (	heta_2-	heta_1)^T x }
end{bmatrix} \


&=
egin{bmatrix}
frac{1}{ 1 + e^{ (	heta_2-	heta_1)^T x^{(i)} } } \
frac{e^{ (	heta_2-	heta_1)^T x }}{ 1 + e^{ (	heta_2-	heta_1)^T x^{(i)} } }
end{bmatrix} \

&=
egin{bmatrix}
frac{1}{ 1  + e^{ (	heta_2-	heta_1)^T x^{(i)} } } \
1 - frac{1}{ 1  + e^{ (	heta_2-	heta_1)^T x^{(i)} } } \
end{bmatrix}
end{align}


    因此,用 	extstyle 	heta'来表示	extstyle 	heta_2-	heta_1,我们就会发现 softmax 回归器预测其中一个类别的概率为 	extstyle frac{1}{ 1  + e^{ (	heta')^T x^{(i)} } },另一个类别概率的为 	extstyle 1 - frac{1}{ 1 + e^{ (	heta')^T x^{(i)} } },这与 logistic回归是一致的。

    广义线性模型

    linear,Logistic,Softmax 都是一个东西推导出来的。
    这些分布之所以长成这个样子,是因为我们对y进行了假设。
    当y是两点分布-------->linear model
    当y是正态分布-------->Logistic model
    当y是多项式分布-------->Softmax

    http://ufldl.stanford.edu/wiki/index.php/Softmax回归#Softmax.E5.9B.9E.E5.BD.92.E4.B8.8ELogistic_.E5.9B.9E.E5.BD.92.E7.9A.84.E5.85.B3.E7.B3.BB

  • 相关阅读:
    layDate 只显示 小时&分钟
    获取从今天以后一周的日期列表
    Laravel_$rules参数规则
    Layui——分步表单
    XML命名空间详解
    centos7搭建svn服务器
    jvm原理
    动态代理与反射
    java之JUC
    实现从数据库加载数据并返回easyui-tree所需要数据
  • 原文地址:https://www.cnblogs.com/zeze/p/6940497.html
Copyright © 2020-2023  润新知