理论部分:
代码部分:
import random import matplotlib.pyplot as plt import numpy as np position = 0 walk = [position] steps = 1000 for i in range(steps): step = 1 if random.randint(0, 1) else -1 position += step walk.append(position) #plt.plot(walk[:1000]) nsteps = 1000 draws = np.random.randint(0, 2, size=nsteps) steps = np.where(draws > 0, 1, -1) walk = steps.cumsum() # 一维向量就可以这样来 #plt.plot(walk[:1000]) print( "min:" + str(walk.min()) ) print( "max:" + str(walk.max()) ) # 需要多久才能距离初始0点至少10步远(任一方向均可) print((np.abs(walk) >= 10).argmax()) nwalks = 5000 nsteps = 1000 #模拟多个随机漫步过程(比如5000个) draws = np.random.randint(-1, 1, size=(nwalks, nsteps)) # 0 or 1 print(draws) steps = np.where(draws >= 0, 1, -1) print(steps) walks = steps.cumsum(1) print(walks) print("max: " + str(walks.max()) ) print("min: " + str(walks.min())) # 用any方法来对此进行检查 因为不是5000个过程都到达了30的距离 hits30 = (np.abs(walks) >= 30).any(1) print("sum: " + str(hits30.sum()) ) # Number that hit 30 or -30 plt.plot(walks[0]) plt.plot(walks[1]) plt.plot(walks[2]) plt.plot(walks[3]) plt.plot(walks[4]) plt.plot(walks[5]) plt.plot(walks[6]) plt.plot(walks[7]) plt.plot(walks[8])
https://www.jianshu.com/p/numpy_test