• python基础3—迭代器 | 切片


    这里有很多python特有的东西,非常有意思,以前只接触过C, C++, Java, Javascript,没想到还可以这样玩

    # ------------------slice-------------------- #
    # slice 切片 从数组切出另一个数组
    li = list(range(10))
    print(li)   # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    
    # [start, end, step]  || (start - end) 要和 step的正负号一致
    
    print(li[2:5])    # [2, 3, 4]
    print(li[:4])    # [0, 1, 2, 3]
    print(li[5:])    # [5, 6, 7, 8, 9]
    print(li[0:20:3])        # [0, 3, 6, 9]
    
    
    # how about minus
    print(li[5:-2])            # [5, 6, 7]
    print(li[9:0:-1])    # [9, 8, 7, 6, 5, 4, 3, 2, 1]
    print(li[9:0:1])    # []
    print(li[9::-1])    # [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
    print(li[::-2])    # [9, 7, 5, 3, 1]
    
    # a new object
    print(li)
    re_li = li[::-1]            # [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
    print(re_li)
    
    
    # ------------------comprehension-------------------- #
    # comprehension  推导列表
    # simple case
    li = []
    for i in range(10):
        li.append(i) 
    print(li)
    
    li = list(range(10)):
            print(li)
    
    li  = [1] * 10
    print(li)
    
    # 浅拷贝
    li_2d = [[0] * 3 ] * 3
    print(li_2d)
    
    li_2d[0][0] = 100
    print(li_2d)
    
    #深拷贝
    li_2d = [ [0] * 3 for i in range(3)]
    print(li_2d)
    
    li_2d[0][0] = 100
    print(li_2d)
    
    li = (x for x in range(10))
    print(type(li))         # generator
    print(li)                  # generator object
          
    for i in range(10):  # way1 
          print(next(li))
          
    for i in li:                # way2
          print(i)
    
          
    li = [x for x in range(10)]    
    print(type(li))         # list
    print(li)                  # [1, 2, 3, 4]
    
    li =  {x for x in range(3)}
    print(type(li))         # set
    print(li)                  # {0, 1, 2}
    
    s = {x for x in range(10)  if x%2==0 }
    print(type(s))     # set
    print(s)              # {0, 8, 2, 4, 6}
    
    s = [ x%2==0 for x in range(10)]
    print(type(s))     # list
    print(s)              # [True, False, Ture, False,Ture, False, Ture, False, Ture, False]
    
    d = {x: x % 2 == 0 for x in range(10)}
    print(type(d))    # list
    print(d)             # {0: True, 1: False, 2: True, 3: False, 4: True, 5: False, 6: True, 7: False, 8: True, 9: False}
    
    # so  'x for x in range(10)'  is a comprehension
    
    
    # generator 将真正的计算推迟到使用时  不一次性生成很多元素,省内存
    # 2.7 版本时一次性生成100W个数字,在3.5版本并不是真正生成100W个数字而是在next取值时才生成
    print(type(range(10)))   # type  
    
    # 平方表
    square_table = []
    for i in range(50000):
        square_table.append(i * i)
    for i in range(5):
        print(square_table[i])
    
    square_generator = ( x * x for x in range(50000))
    print(type(square_generator))   # generator
    
    for i in range(5):
        print(next(square_generator))
    
    def fib(limit):
        n, a, b = 0 , 0 , 1
        while n < limit:
            yield b
            a, b  = b, a + b
            n += 1
        pass
    import traceback
    
    f = fib(5)
    print(type(f))
    print(next(f))
    print(next(f))
    print(next(f))
    print(next(f))
    print(next(f))
    try: 
        print(next(f))
    except StopIteration:
        traceback.print_exc()
    for i in fib(5):
        print(i)
    
    
    # Iterable  Iterator
    # 可迭代 和 迭代器不一样的概念, 可迭代表示可以用for循环, 而迭代器是用来使用next()不断返回下一个值,采用惰性计算
    # 生成器一定是迭代器  使用一个生成一个 看下面的fib例子
    from collections import Iterable
    from collections import Iterator
    
    print(isinstance([1,2,3], Iterable))                    # True
    print(isinstance({}, Iterable))            # True
    print(isinstance(123, Iterable))        # False
    print(isinstance('abc', Iterable))        # True
    
    print(isinstance([1, 2, 3], Iterator))                         # False
     
    g = (x * x for x in range(10))
    print(type(g))        # <type 'generator'> 
    print(isinstance(g, Iterable))    # True
    print(isinstance(g, Iterator))    # True
    for i in g:
        print(i)
    
    def fib(limit):
        n, a, b = 0 , 0 , 1
        while n < limit:
            yield b
            a, b  = b, a + b
            n += 1
        pass
    f = fib(5)
    print(type(f))
    print(isinstance(f, Iterable))   # True
    print(isinstance(f, Iterator))    # True
    for i in f:
        print(i)
  • 相关阅读:
    vue2.0 之 douban (二)创建自定义组件tabbar
    vue2.0 之 douban (一)框架搭建 及 整体布局
    react-navigation
    react-native modal
    javascript-使用el表达式获取后台传递的数据
    java Map
    java List集合
    javascript 自定义Map
    javascript Array(数组)
    ZOJ 3868 GCD Expectation (容斥+莫比乌斯反演)
  • 原文地址:https://www.cnblogs.com/zeroones/p/8329491.html
Copyright © 2020-2023  润新知