• HDU2795——线段树——Billboard


    At the entrance to the university, there is a huge rectangular billboard of size h*w (h is its height and w is its width). The board is the place where all possible announcements are posted: nearest programming competitions, changes in the dining room menu, and other important information. 

    On September 1, the billboard was empty. One by one, the announcements started being put on the billboard. 

    Each announcement is a stripe of paper of unit height. More specifically, the i-th announcement is a rectangle of size 1 * wi. 

    When someone puts a new announcement on the billboard, she would always choose the topmost possible position for the announcement. Among all possible topmost positions she would always choose the leftmost one. 

    If there is no valid location for a new announcement, it is not put on the billboard (that's why some programming contests have no participants from this university). 

    Given the sizes of the billboard and the announcements, your task is to find the numbers of rows in which the announcements are placed.
     

    Input

    There are multiple cases (no more than 40 cases). 

    The first line of the input file contains three integer numbers, h, w, and n (1 <= h,w <= 10^9; 1 <= n <= 200,000) - the dimensions of the billboard and the number of announcements. 

    Each of the next n lines contains an integer number wi (1 <= wi <= 10^9) - the width of i-th announcement.
     

    Output

    For each announcement (in the order they are given in the input file) output one number - the number of the row in which this announcement is placed. Rows are numbered from 1 to h, starting with the top row. If an announcement can't be put on the billboard, output "-1" for this announcement.
     

    Sample Input

    3 5 5 2 4 3 3 3
     

    Sample Output

    1 2 1 3 -1
     
    /*
    先修改子节点,最后才是root节点
    另一种线段树题型,在节点上记录权值,以及左右区间
    
    */
    #include <bits/stdc++.h>
    using namespace std;
    
    const int MAX = 2000000 + 10;
    struct edge{
        int l, r, n;
    }a[MAX];
    int w, h, n;
    int ans;
    int x;
    
    void build(int rt, int l, int r,int w)
    {
        a[rt].l = l;
        a[rt].r = r;
        a[rt].n = w;
        if(l == r) return;
        int mid = (l + r) >> 1;
        build(rt*2, l ,mid, w);
        build(rt*2+1, mid + 1, r, w);
    }
    
    void update(int rt,int x)
    {
        if(a[rt].l == a[rt].r){
            a[rt].n -= x;
            ans = a[rt].l;
            return;
        }
        if(x <= a[2*rt].n) update(2*rt, x);
        else update(2*rt+1, x);
        a[rt].n = max(a[rt*2].n, a[rt*2+1].n);
    }
    
    int main()
    {
        while(~scanf("%d%d%d", &h, &w, &n)){
            if(h > n)  h = n;
            build(1,1, h, w);
            for(int i = 1; i <= n ; i++){
                scanf("%d", &x);
                if(a[1].n < x) printf("-1
    ");
                else {
                    update(1, x);
                    printf("%d
    ", ans);
                }
            }
        }
        return 0;
    }
                
    

      

  • 相关阅读:
    02安卓用户界面优化之(三)如何使用菜单
    07-业务敏捷:帮助DevOps快速落地的源动力
    转型之路:企业实施DevOps的常见路径和问题
    价值流分析:关于DevOps转型,我们应该从何处入手
    DevOps的衡量:你是否找到了DevOps的实施路线图
    DevOps的实施:到底是工具先行还是文化先行
    DevOps的价值:数字化转型时代,DevOps是必选项
    DevOps的“定义”:DevOps究竟要解决什么问题
    Jenkins产品经理是如何设计产品的
    关于DevOps组织和文化的那些趣事儿.
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4694194.html
Copyright © 2020-2023  润新知