• Kruskal——还是畅通工程


    Description

    某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。 
     

    Input

    测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。 
    当N为0时,输入结束,该用例不被处理。 
     

    Output

    对每个测试用例,在1行里输出最小的公路总长度。 
     

    Sample Input

    3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
     

    Sample Output

    3 5
    大意:让你求出所有连接起来的最小的路程。
    kruscal算法:考虑的是边,与prim算法不同,prim考虑的是定点,所以对于稠密图来说用prim算法,对于稀疏的就用kruscal算法。kruscal算法分两步,第一步是将所有的路程从小到大进行排序,利用一个结构体,第二部是利用一个for循环,判断父节点是否是同一个如果不是那么加起来。kruscal用并查集思想优化,方便许多,并查集就是用一个数组来存储父节点,不管从哪里到哪里,只记录关系,即p数组和find函数。
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int MAX = 5000;
    struct edge{
        int s;
        int e;
        int w;
    }a[MAX];
    bool cmp(edge a,edge b){
        return a.w < b.w;
    }
    int p[MAX];
    int find(int x){
     return x == p[x]?x:p[x] = find(p[x]);
     }
     int main()
     {
         int N,M;
         while(~scanf("%d",&N)&&N){
                M = N*(N-1)/2;
              memset(p,0,sizeof(p));
              memset(a,0,sizeof(a));
              for(int i = 1; i <= N;i++)
                 p[i] = i;
              for(int i = 1 ; i<= M;i++)
                scanf("%d%d%d",&a[i].s,&a[i].e,&a[i].w);
              sort(a+1,a+M+1,cmp);
              int sum = 0;
              for(int i = 1;i <= M ;i++){
                    int fx = find(a[i].s),fy = find(a[i].e);
               if(fx!=fy){
                p[fx] = fy;
               sum +=a[i].w;
                }
            }
            printf("%d
    ",sum);
         }
         return 0;
     }
    View Code
  • 相关阅读:
    Hibernate之必须导入jar包
    浏览器兼容性问题
    CSS中的浮动清除
    CSS的三种手段让元素脱离标准本文档流——浮动、绝对定位、固定定位
    块级元素和行内元素
    网页设计前端——盒子模型
    CSS的继承性和层叠性
    网站前端设计——选择器
    网站中图片的相对路径与绝对路径
    网站隐藏文件夹
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4322097.html
Copyright © 2020-2023  润新知