Unique Binary Search Trees
Total Accepted: 69271 Total Submissions: 191174 Difficulty: Medium
Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 / / / 3 2 1 1 3 2 / / 2 1 2 3
class Solution { public: int numTrees(int n) { vector<int> map; map.push_back(1); for (int i = 1; i <= n; ++i) { int t = 0; for (int j = 0; j < i; ++j) t += map[j] * map[i-j-1]; map.push_back(t); } return map.back(); } };
Unique Binary Search Trees II
Total Accepted: 45531 Total Submissions: 157430 Difficulty: Medium
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.
For example,
Given n = 3, your program should return all 5 unique BST's shown below.
1 3 3 2 1 / / / 3 2 1 1 3 2 / / 2 1 2 3
confused what "{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: vector<TreeNode*> generateTrees(int start,int end){ vector<TreeNode*> res; if(end < start) { res.push_back(NULL); return res; } for(int rootValue = start; rootValue<=end; ++rootValue){ vector<TreeNode*> left = generateTrees(start,rootValue-1); vector<TreeNode*> right = generateTrees(rootValue+1,end); for(int i=0;i<left.size();++i){ for(int j=0;j<right.size();++j){ TreeNode *root = new TreeNode(rootValue); root->left = left[i]; root->right = right[j]; res.push_back(root); } } } return res; } vector<TreeNode*> generateTrees(int n) { return n==0 ? vector<TreeNode*>():generateTrees(1,n); } };
Next challenges: (M) Different Ways to Add Parentheses