咕咕咕咕咕。
F - Numbered Checker
首先矩形容斥,把一个询问拆分成 4 个询问。现在只需要解决:左上角为\((1, 1)\),右下角为 \((x, y)\) 的矩形区域和这一问题。
把列数为奇数和偶数的分开算,以奇数为例,偶数列同理可得。
第 1 列的上的非零元素可以组成一个首项元素为 \(1\) ,公差为 \(2m\), 共 \(\lfloor \frac{x + 1}{2} \rfloor\) 项的等差数列。
把列数为奇数的列,每列求和后,搞成一个一维数组,这又是一个等差数列,首项为第一列的元素和,公差为 \(2 \lfloor \frac{x + 1}{2} \rfloor\) , 共 \(\lfloor \frac{y + 1}{2} \rfloor\) 项。
AC代码
// Problem: F - Numbered Checker
// Contest: AtCoder - UNICORN Programming Contest 2022(AtCoder Beginner Contest 269)
// URL: https://atcoder.jp/contests/abc269/tasks/abc269_f
// Memory Limit: 1024 MB
// Time Limit: 3000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
#define CPPIO std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
#ifdef BACKLIGHT
#include "debug.h"
#else
#define logd(...) ;
#define ASSERT(x) ;
#define serialize() std::string("")
#endif
using i64 = int64_t;
using u64 = uint64_t;
void Initialize();
void SolveCase(int Case);
int main(int argc, char* argv[]) {
CPPIO;
int T = 1;
// std::cin >> T;
for (int t = 1; t <= T; ++t) {
SolveCase(t);
}
return 0;
}
void Initialize() {}
template <typename ValueType, ValueType mod_, typename SupperType>
class Modular {
static ValueType normalize(ValueType value) {
if (value >= 0 && value < mod_)
return value;
value %= mod_;
if (value < 0)
value += mod_;
return value;
}
static ValueType power(ValueType value, int64_t exponent) {
ValueType result = 1;
ValueType base = value;
while (exponent) {
if (exponent & 1)
result = SupperType(result) * base % mod_;
base = SupperType(base) * base % mod_;
exponent >>= 1;
}
return result;
}
public:
Modular(SupperType value = 0) : value_(normalize(value % mod_)) {}
ValueType value() const { return value_; }
Modular inv() const { return Modular(power(value_, mod_ - 2)); }
Modular power(int64_t exponent) const { return Modular(power(value_, exponent)); }
friend Modular operator+(const Modular& lhs, const Modular& rhs) {
ValueType result = lhs.value() + rhs.value() >= mod_ ? lhs.value() + rhs.value() - mod_
: lhs.value() + rhs.value();
return Modular(result);
}
friend Modular operator-(const Modular& lhs, const Modular& rhs) {
ValueType result = lhs.value() - rhs.value() < 0 ? lhs.value() - rhs.value() + mod_
: lhs.value() - rhs.value();
return Modular(result);
}
friend Modular operator-(const Modular& lhs) {
ValueType result = normalize(-lhs.value() + mod_);
return result;
}
friend Modular operator*(const Modular& lhs, const Modular& rhs) {
ValueType result = SupperType(1) * lhs.value() * rhs.value() % mod_;
return Modular(result);
}
friend Modular operator/(const Modular& lhs, const Modular& rhs) {
ValueType result = SupperType(1) * lhs.value() * rhs.inv().value() % mod_;
return Modular(result);
}
std::string to_string() const { return std::to_string(value_); }
private:
ValueType value_;
};
// using Mint = Modular<int, 1'000'000'007, int64_t>;
using Mint = Modular<int, 998'244'353, int64_t>;
class Binom {
private:
std::vector<Mint> f, g;
public:
Binom(int n) {
f.resize(n + 1);
g.resize(n + 1);
f[0] = Mint(1);
for (int i = 1; i <= n; ++i)
f[i] = f[i - 1] * Mint(i);
g[n] = f[n].inv();
for (int i = n - 1; i >= 0; --i)
g[i] = g[i + 1] * Mint(i + 1);
}
Mint operator()(int n, int m) {
if (n < 0 || m < 0 || m > n)
return Mint(0);
return f[n] * g[m] * g[n - m];
}
};
void SolveCase(int Case) {
int n, m;
std::cin >> n >> m;
int q;
std::cin >> q;
auto S1 = [&](Mint a0, Mint k, Mint d) { return k * a0 + d * (k - 1) * (k) / Mint(2); };
auto S21 = [&](int x, int y) {
Mint a0 = S1(1, Mint((x + 1) / 2), Mint(2 * m));
Mint k = Mint((y + 1) / 2);
Mint d = Mint(2) * Mint((x + 1) / 2);
return S1(a0, k, d);
};
auto S22 = [&](int x, int y) {
Mint a0 = S1(Mint(m + 2), x / 2, 2 * m);
Mint k = Mint(y / 2);
Mint d = Mint(2) * Mint(x / 2);
return S1(a0, k, d);
};
auto Q = [&](int x, int y) { return S21(x, y) + S22(x, y); };
for (int _ = 1; _ <= q; ++_) {
int x1, x2, y1, y2;
std::cin >> x1 >> x2 >> y1 >> y2;
Mint ans = Q(x2, y2) - Q(x2, y1 - 1) - Q(x1 - 1, y2) + Q(x1 - 1, y1 - 1);
std::cout << ans.value() << "\n";
}
}
G - Reversible Cards 2
转化一下,问题变成一个01背包问题:背包初始装了 \(s\) 单位重量,价值为 \(0\) 的东西,有 \(n\) 件物品,每件物品价值为 \(1\) ,重量为 \(w_i = b_i - a_i\) 单位重量(\(w_i\)可能小于零),问背包装恰好 \(k\) 单位重量的物品的最小代价。
这样直接去 DP 复杂度为\(O(nm)\),直接爆炸。
观察1:所有物品重量的绝对值之和小于等于 \(m\) 。
证明:\[\sum_i |w_i| = \sum_i |b_i - a_i| \le \sum_i |b_i| + |-a_i| = m \]
观察2: 如果把重量相同的物品视为一类,则至多有 \(2 \lceil \sqrt{m} \rceil\) 种物品。或者说至多有\(2\sqrt{m}\)中物品数量大于等于1。
证明: 考虑反证法。假设有\(2 \lceil \sqrt{m} \rceil + 1\)种物品,考虑构造出一种方案使得\(\sum_i |w_i|\)尽可能小,则应该是每种物品数量都为1,然后物品重量值域为\([-\lceil \sqrt{m} \rceil, \lceil \sqrt{m} \rceil]\)。此时有\(\sum_i |w_i| = 0 + 2 \sum_{i = 1}^{\lceil \sqrt{m} \rceil} i = m + \lceil \sqrt{m} \rceil\),与观察1相悖。
观察3: 至多有 \(2 \lceil \frac{\sqrt{m}}{2^t} \rceil\) 种物品数量大于等于\(2^t\)。
证明:类似观察2的证明。
现在问题转化成多重背包问题,可以二进制分组优化搞,假设有\(c\)种物品,第\(i\)种物品有\(k_i\)个,则复杂度为\(O(n + m \sum_{i = 1}^{c} \log k_i)\)。又有
所以总的时间复杂度为\(O(n + m\sqrt m)\)。
AC代码
// Problem: G - Reversible Cards 2
// Contest: AtCoder - UNICORN Programming Contest 2022(AtCoder Beginner Contest 269)
// URL: https://atcoder.jp/contests/abc269/tasks/abc269_g
// Memory Limit: 1024 MB
// Time Limit: 3000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
#define CPPIO std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
#ifdef BACKLIGHT
#include "debug.h"
#else
#define logd(...) ;
#define ASSERT(x) ;
#define serialize() std::string("")
#endif
using i64 = int64_t;
using u64 = uint64_t;
void Initialize();
void SolveCase(int Case);
int main(int argc, char* argv[]) {
CPPIO;
int T = 1;
// std::cin >> T;
for (int t = 1; t <= T; ++t) {
SolveCase(t);
}
return 0;
}
void Initialize() {}
void SolveCase(int Case) {
int n, m;
std::cin >> n >> m;
std::map<int, int> mp;
int s = 0;
for (int i = 0; i < n; ++i) {
int a, b;
std::cin >> a >> b;
++mp[b - a];
s += a;
}
const int INF = 0x3f3f3f3f;
std::vector<int> dp(m + 1, INF);
dp[s] = 0;
for (auto [d, c] : mp) {
if (d == 0)
continue;
int x = 1;
while (c) {
x = std::min(x, c);
if (d > 0) {
for (int i = m; i >= x * d; --i)
dp[i] = std::min(dp[i], dp[i - x * d] + x);
} else {
for (int i = 0; i - x * d <= m; ++i)
dp[i] = std::min(dp[i], dp[i - x * d] + x);
}
c = c - x;
x = x * 2;
}
}
for (int i = 0; i <= m; ++i) {
if (dp[i] == INF)
dp[i] = -1;
std::cout << dp[i] << "\n";
}
}
Ex - Antichain
很容易能得到一个 \(O(n^2)\) 的 DP ,但是复杂度过高。考虑使用 FFT 来优化。
假设 \(f_u(x) = \sum_i a_i x^i\) 表示以 \(u\) 为根的子树的答案的生成函数,即以 \(u\) 为根的子树中有 \(a_i\) 种方案构造出 \(|S| = i\) 的\(S\) 。
首先,对树进行轻重剖分,跑出重儿子和轻儿子。对于一棵树,考虑从根开始的重链,假设链上的节点自顶向下依次为 \(c_i, i = 1, 2, ..., k\)。
令
那么对于每一个 \(c_i\), 递归计算出其轻儿子的\(f\),然后通过分治 FFT 计算出 \(g_{c_i}(x)\)。
考虑通过合并重链计算出整棵树的答案 \(f_{c_1}(x)\) 。
假设选择了 \(c_i\),那么重链上其余点都不能选了, \(j \ge i\) 的 \(g_{c_j}(x)\) 也不能选,而 \(j < i\) 的 \(g_{c_j}(x)\) 可以随便选;当然也可以重链上的点一个都不选。由此有
这个过程可以通过分治来搞,就把一段区间分成两半,前一半的生成函数为 \(L_1\) , \(g_{c_j}(x)\) 的积为 \(R_1\) ;后一半的生成函数为 \(L_2\) , \(g_{c_j}(x)\) 的积为 \(R_2\) 。则整个区间的生成函数为 \(L_1R_2 + L2\),\(g_{c_j}(x)\) 的积为 \(R_1R_2\)。
然后就是递归去搞就完事了,时间复杂度为 \(O(n \log^3n)\)。(复杂度证明待补)
AC代码
// Problem: Ex - Antichain
// Contest: AtCoder - UNICORN Programming Contest 2022(AtCoder Beginner Contest 269)
// URL: https://atcoder.jp/contests/abc269/tasks/abc269_h
// Memory Limit: 1024 MB
// Time Limit: 8000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
#define CPPIO std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
#ifdef BACKLIGHT
#include "debug.h"
#else
#define logd(...) ;
#define ASSERT(x) ;
#define serialize() std::string("")
#endif
using i64 = int64_t;
using u64 = uint64_t;
void Initialize();
void SolveCase(int Case);
int main(int argc, char* argv[]) {
CPPIO;
int T = 1;
// std::cin >> T;
for (int t = 1; t <= T; ++t) {
SolveCase(t);
}
return 0;
}
void Initialize() {}
namespace Polynomial {
constexpr int P = 998244353, G = 3;
std::vector<int> rev, roots{0, 1};
int power(int a, int b) {
int r = 1;
while (b) {
if (b & 1)
r = 1ll * r * a % P;
a = 1ll * a * a % P;
b >>= 1;
}
return r;
}
void dft(std::vector<int>& a) {
int n = a.size();
if (int(rev.size()) != n) {
int k = __builtin_ctz(n) - 1;
rev.resize(n);
for (int i = 0; i < n; ++i)
rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
}
for (int i = 0; i < n; ++i)
if (rev[i] < i)
std::swap(a[i], a[rev[i]]);
if (int(roots.size()) < n) {
int k = __builtin_ctz(roots.size());
roots.resize(n);
while ((1 << k) < n) {
int e = power(G, (P - 1) >> (k + 1));
for (int i = 1 << (k - 1); i < (1 << k); ++i) {
roots[2 * i] = roots[i];
roots[2 * i + 1] = 1ll * roots[i] * e % P;
}
++k;
}
}
for (int k = 1; k < n; k *= 2) {
for (int i = 0; i < n; i += 2 * k) {
for (int j = 0; j < k; ++j) {
int u = a[i + j];
int v = 1ll * a[i + j + k] * roots[k + j] % P;
int x = u + v;
if (x >= P)
x -= P;
a[i + j] = x;
x = u - v;
if (x < 0)
x += P;
a[i + j + k] = x;
}
}
}
}
void idft(std::vector<int>& a) {
int n = a.size();
std::reverse(a.begin() + 1, a.end());
dft(a);
int inv = power(n, P - 2);
for (int i = 0; i < n; ++i)
a[i] = 1ll * a[i] * inv % P;
}
struct poly {
std::vector<int> a;
poly() {}
poly(int f0) { a = {f0}; }
poly(const std::vector<int>& f) : a(f) {
while (!a.empty() && !a.back())
a.pop_back();
}
poly(const std::vector<int>& f, int n) : a(f) { a.resize(n); }
int size() const { return a.size(); }
int deg() const { return a.size() - 1; }
int operator[](int idx) const {
if (idx < 0 || idx >= size())
return 0;
return a[idx];
}
std::string to_string() const {
std::stringstream ss;
ss << "poly: ";
for (int v : a)
ss << v << " ";
return ss.str();
}
poly mulxk(int k) const {
auto b = a;
b.insert(b.begin(), k, 0);
return poly(b);
}
poly modxk(int k) const {
k = std::min(k, size());
return poly(std::vector<int>(a.begin(), a.begin() + k));
}
poly alignxk(int k) const { return poly(a, k); }
poly divxk(int k) const {
if (size() <= k)
return poly();
return poly(std::vector<int>(a.begin() + k, a.end()));
}
friend poly operator+(const poly& f, const poly& g) {
int k = std::max(f.size(), g.size());
std::vector<int> res(k);
for (int i = 0; i < k; ++i) {
res[i] = f[i] + g[i];
if (res[i] >= P)
res[i] -= P;
}
return poly(res);
}
friend poly operator-(const poly& f, const poly& g) {
int k = std::max(f.size(), g.size());
std::vector<int> res(k);
for (int i = 0; i < k; ++i) {
res[i] = f[i] - g[i];
if (res[i] < 0)
res[i] += P;
}
return poly(res);
}
friend poly operator*(const poly& f, const poly& g) {
int sz = 1, k = f.size() + g.size() - 1;
while (sz < k)
sz *= 2;
std::vector<int> p = f.a, q = g.a;
p.resize(sz);
q.resize(sz);
dft(p);
dft(q);
for (int i = 0; i < sz; ++i)
p[i] = 1ll * p[i] * q[i] % P;
idft(p);
return poly(p);
}
friend poly operator/(const poly& f, const poly& g) { return f.divide(g).first; }
friend poly operator%(const poly& f, const poly& g) { return f.divide(g).second; }
poly& operator+=(const poly& f) { return (*this) = (*this) + f; }
poly& operator-=(const poly& f) { return (*this) = (*this) - f; }
poly& operator*=(const poly& f) { return (*this) = (*this) * f; }
poly& operator/=(const poly& f) { return (*this) = divide(f).first; }
poly& operator%=(const poly& f) { return (*this) = divide(f).second; }
poly derivative() const {
if (a.empty())
return poly();
int n = a.size();
std::vector<int> res(n - 1);
for (int i = 0; i < n - 1; ++i)
res[i] = 1ll * (i + 1) * a[i + 1] % P;
return poly(res);
}
poly integral() const {
if (a.empty())
return poly();
int n = a.size();
std::vector<int> res(n + 1);
for (int i = 0; i < n; ++i)
res[i + 1] = 1ll * a[i] * power(i + 1, P - 2) % P;
return poly(res);
}
poly rev() const { return poly(std::vector<int>(a.rbegin(), a.rend())); }
poly inv(int m) const {
poly x(power(a[0], P - 2));
int k = 1;
while (k < m) {
k *= 2;
x = (x * (2 - modxk(k) * x)).modxk(k);
}
return x.modxk(m);
}
poly log(int m) const { return (derivative() * inv(m)).integral().modxk(m); }
poly exp(int m) const {
poly x(1);
int k = 1;
while (k < m) {
k *= 2;
x = (x * (1 - x.log(k) + modxk(k))).modxk(k);
}
return x.modxk(m);
}
poly sqrt(int m) const {
poly x(1);
int k = 1;
while (k < m) {
k *= 2;
x = (x + (modxk(k) * x.inv(k)).modxk(k)) * ((P + 1) / 2);
}
return x.modxk(m);
}
poly sin() const {
int i = power(G, (P - 1) / 4);
poly p = i * (*this);
p = p.exp(p.size());
poly q = (P - i) * (*this);
q = q.exp(q.size());
poly r = (p - q) * power(2 * i % P, P - 2);
return r;
}
poly cos() const {
int i = power(G, (P - 1) / 4);
poly p = i * (*this);
p = p.exp(p.size());
poly q = (P - i) * (*this);
q = q.exp(q.size());
poly r = (p + q) * power(2, P - 2);
return r;
}
poly tan() const { return sin() / cos(); }
poly cot() const { return cos() / sin(); }
poly arcsin() {
poly sq = (*this) * (*this).modxk(size());
for (int i = 0; i < size(); ++i)
sq.a[i] = sq.a[i] ? P - sq.a[i] : 0;
sq.a[0] = 1 + sq.a[0];
if (sq.a[0] >= P)
sq.a[0] -= P;
poly r = (derivative() * sq.sqrt(size()).inv(size())).integral();
return r;
}
poly arccos() {
poly r = arcsin();
for (int i = 0; i < size(); ++i)
r.a[i] = r.a[i] ? P - r.a[i] : 0;
return r;
}
poly arctan() {
poly sq = (*this) * (*this).modxk(size());
sq.a[0] = 1 + sq.a[0];
if (sq.a[0] >= P)
sq.a[0] -= P;
poly r = (derivative() * sq.inv(size())).integral();
return r;
}
poly arccot() {
poly r = arctan();
for (int i = 0; i < size(); ++i)
r.a[i] = r.a[i] ? P - r.a[i] : 0;
return r;
}
poly mulT(const poly& b) const {
if (b.size() == 0)
return poly();
int n = b.size();
return ((*this) * b.rev()).divxk(n - 1);
}
std::pair<poly, poly> divide(const poly& g) const {
int n = a.size(), m = g.size();
if (n < m)
return make_pair(poly(), a);
poly fR = rev();
poly gR = g.rev().alignxk(n - m + 1);
poly gRI = gR.inv(gR.size());
poly qR = (fR * gRI).modxk(n - m + 1);
poly q = qR.rev();
poly r = ((*this) - g * q).modxk(m - 1);
return std::make_pair(q, r);
}
std::vector<int> eval(std::vector<int> x) const {
if (size() == 0)
return std::vector<int>(x.size(), 0);
const int n = std::max(int(x.size()), size());
std::vector<poly> q(4 * n);
std::vector<int> ans(x.size());
x.resize(n);
std::function<void(int, int, int)> build = [&](int p, int l, int r) {
if (r - l == 1) {
q[p] = std::vector<int>{1, (P - x[l]) % P};
} else {
int m = (l + r) / 2;
build(2 * p, l, m);
build(2 * p + 1, m, r);
q[p] = q[2 * p] * q[2 * p + 1];
}
};
build(1, 0, n);
std::function<void(int, int, int, const poly&)> work = [&](int p, int l, int r,
const poly& num) {
if (r - l == 1) {
if (l < int(ans.size()))
ans[l] = num[0];
} else {
int m = (l + r) / 2;
work(2 * p, l, m, num.mulT(q[2 * p + 1]).modxk(m - l));
work(2 * p + 1, m, r, num.mulT(q[2 * p]).modxk(r - m));
}
};
work(1, 0, n, mulT(q[1].inv(n)));
return ans;
}
};
} // namespace Polynomial
using Polynomial::poly;
void SolveCase(int Case) {
int n;
std::cin >> n;
std::vector<int> p(n);
std::vector<std::vector<int>> g(n);
for (int i = 1; i < n; ++i) {
std::cin >> p[i];
--p[i];
g[p[i]].push_back(i);
}
std::vector<int> sz(n), heavy_son(n);
std::function<void(int)> dfs1 = [&](int u) {
sz[u] = 1;
heavy_son[u] = -1;
for (int v : g[u]) {
dfs1(v);
sz[u] += sz[v];
if (heavy_son[u] == -1 || sz[v] > sz[heavy_son[u]])
heavy_son[u] = v;
}
};
dfs1(0);
std::vector<int> top(n);
std::function<void(int, int)> dfs2 = [&](int u, int k) {
top[u] = k;
if (heavy_son[u] != -1)
dfs2(heavy_son[u], k);
for (int v : g[u]) {
if (v == heavy_son[u])
continue;
dfs2(v, v);
}
};
dfs2(0, 0);
std::function<poly(const std::vector<poly>&, int, int)> merge_light =
[&](const std::vector<poly>& a, int l, int r) {
if (l == r)
return a[l];
int m = (l + r) >> 1;
auto L = merge_light(a, l, m);
auto R = merge_light(a, m + 1, r);
return L * R;
};
std::function<std::pair<poly, poly>(const std::vector<poly>&, int, int)> merge_heavy =
[&](const std::vector<poly>& a, int l, int r) {
if (l == r)
return std::make_pair(poly{1}, a[l]);
int m = (l + r) >> 1;
auto [L1, R1] = merge_heavy(a, l, m);
auto [L2, R2] = merge_heavy(a, m + 1, r);
auto res = std::make_pair(L1 * R2 + L2, R1 * R2);
return res;
};
std::function<poly(int)> dfs3 = [&](int u) {
std::vector<poly> heavy_chain;
int p = u;
while (p != -1) {
std::vector<poly> light_children;
light_children.push_back({1});
for (int v : g[p]) {
if (v == heavy_son[p])
continue;
light_children.push_back(dfs3(v));
}
auto gp = merge_light(light_children, 0, light_children.size() - 1);
heavy_chain.push_back(gp);
p = heavy_son[p];
}
std::reverse(heavy_chain.begin(), heavy_chain.end());
auto [fi, se] = merge_heavy(heavy_chain, 0, heavy_chain.size() - 1);
auto r = fi * poly({0, 1}) + se;
return r;
};
auto ans = dfs3(0).a;
ans.resize(n + 1);
for (int i = 1; i <= n; ++i)
std::cout << ans[i] << "\n";
}