• AtCoder Beginner Contest 269


    咕咕咕咕咕。

    F - Numbered Checker

    首先矩形容斥,把一个询问拆分成 4 个询问。现在只需要解决:左上角为\((1, 1)\),右下角为 \((x, y)\) 的矩形区域和这一问题。

    把列数为奇数和偶数的分开算,以奇数为例,偶数列同理可得。

    第 1 列的上的非零元素可以组成一个首项元素为 \(1\) ,公差为 \(2m\), 共 \(\lfloor \frac{x + 1}{2} \rfloor\) 项的等差数列。

    把列数为奇数的列,每列求和后,搞成一个一维数组,这又是一个等差数列,首项为第一列的元素和,公差为 \(2 \lfloor \frac{x + 1}{2} \rfloor\) , 共 \(\lfloor \frac{y + 1}{2} \rfloor\) 项。

    AC代码
    // Problem: F - Numbered Checker
    // Contest: AtCoder - UNICORN Programming Contest 2022(AtCoder Beginner Contest 269)
    // URL: https://atcoder.jp/contests/abc269/tasks/abc269_f
    // Memory Limit: 1024 MB
    // Time Limit: 3000 ms
    //
    // Powered by CP Editor (https://cpeditor.org)
    
    #include <bits/stdc++.h>
    
    #define CPPIO std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
    
    #ifdef BACKLIGHT
    #include "debug.h"
    #else
    #define logd(...) ;
    #define ASSERT(x) ;
    #define serialize() std::string("")
    #endif
    
    using i64 = int64_t;
    using u64 = uint64_t;
    
    void Initialize();
    void SolveCase(int Case);
    
    int main(int argc, char* argv[]) {
      CPPIO;
      int T = 1;
      // std::cin >> T;
      for (int t = 1; t <= T; ++t) {
        SolveCase(t);
      }
      return 0;
    }
    
    void Initialize() {}
    
    template <typename ValueType, ValueType mod_, typename SupperType>
    class Modular {
      static ValueType normalize(ValueType value) {
        if (value >= 0 && value < mod_)
          return value;
        value %= mod_;
        if (value < 0)
          value += mod_;
        return value;
      }
    
      static ValueType power(ValueType value, int64_t exponent) {
        ValueType result = 1;
        ValueType base = value;
        while (exponent) {
          if (exponent & 1)
            result = SupperType(result) * base % mod_;
          base = SupperType(base) * base % mod_;
          exponent >>= 1;
        }
        return result;
      }
    
     public:
      Modular(SupperType value = 0) : value_(normalize(value % mod_)) {}
    
      ValueType value() const { return value_; }
    
      Modular inv() const { return Modular(power(value_, mod_ - 2)); }
    
      Modular power(int64_t exponent) const { return Modular(power(value_, exponent)); }
    
      friend Modular operator+(const Modular& lhs, const Modular& rhs) {
        ValueType result = lhs.value() + rhs.value() >= mod_ ? lhs.value() + rhs.value() - mod_
                                                             : lhs.value() + rhs.value();
        return Modular(result);
      }
    
      friend Modular operator-(const Modular& lhs, const Modular& rhs) {
        ValueType result = lhs.value() - rhs.value() < 0 ? lhs.value() - rhs.value() + mod_
                                                         : lhs.value() - rhs.value();
        return Modular(result);
      }
    
      friend Modular operator-(const Modular& lhs) {
        ValueType result = normalize(-lhs.value() + mod_);
        return result;
      }
    
      friend Modular operator*(const Modular& lhs, const Modular& rhs) {
        ValueType result = SupperType(1) * lhs.value() * rhs.value() % mod_;
        return Modular(result);
      }
    
      friend Modular operator/(const Modular& lhs, const Modular& rhs) {
        ValueType result = SupperType(1) * lhs.value() * rhs.inv().value() % mod_;
        return Modular(result);
      }
    
      std::string to_string() const { return std::to_string(value_); }
    
     private:
      ValueType value_;
    };
    
    // using Mint = Modular<int, 1'000'000'007, int64_t>;
    using Mint = Modular<int, 998'244'353, int64_t>;
    
    class Binom {
     private:
      std::vector<Mint> f, g;
    
     public:
      Binom(int n) {
        f.resize(n + 1);
        g.resize(n + 1);
    
        f[0] = Mint(1);
        for (int i = 1; i <= n; ++i)
          f[i] = f[i - 1] * Mint(i);
        g[n] = f[n].inv();
        for (int i = n - 1; i >= 0; --i)
          g[i] = g[i + 1] * Mint(i + 1);
      }
      Mint operator()(int n, int m) {
        if (n < 0 || m < 0 || m > n)
          return Mint(0);
        return f[n] * g[m] * g[n - m];
      }
    };
    
    void SolveCase(int Case) {
      int n, m;
      std::cin >> n >> m;
      int q;
      std::cin >> q;
    
      auto S1 = [&](Mint a0, Mint k, Mint d) { return k * a0 + d * (k - 1) * (k) / Mint(2); };
    
      auto S21 = [&](int x, int y) {
        Mint a0 = S1(1, Mint((x + 1) / 2), Mint(2 * m));
        Mint k = Mint((y + 1) / 2);
        Mint d = Mint(2) * Mint((x + 1) / 2);
        return S1(a0, k, d);
      };
    
      auto S22 = [&](int x, int y) {
        Mint a0 = S1(Mint(m + 2), x / 2, 2 * m);
        Mint k = Mint(y / 2);
        Mint d = Mint(2) * Mint(x / 2);
        return S1(a0, k, d);
      };
    
      auto Q = [&](int x, int y) { return S21(x, y) + S22(x, y); };
    
      for (int _ = 1; _ <= q; ++_) {
        int x1, x2, y1, y2;
        std::cin >> x1 >> x2 >> y1 >> y2;
    
        Mint ans = Q(x2, y2) - Q(x2, y1 - 1) - Q(x1 - 1, y2) + Q(x1 - 1, y1 - 1);
        std::cout << ans.value() << "\n";
      }
    }
    

    G - Reversible Cards 2

    转化一下,问题变成一个01背包问题:背包初始装了 \(s\) 单位重量,价值为 \(0\) 的东西,有 \(n\) 件物品,每件物品价值为 \(1\) ,重量为 \(w_i = b_i - a_i\) 单位重量(\(w_i\)可能小于零),问背包装恰好 \(k\) 单位重量的物品的最小代价。

    这样直接去 DP 复杂度为\(O(nm)\),直接爆炸。

    观察1:所有物品重量的绝对值之和小于等于 \(m\)
    证明

    \[\sum_i |w_i| = \sum_i |b_i - a_i| \le \sum_i |b_i| + |-a_i| = m \]

    观察2: 如果把重量相同的物品视为一类,则至多有 \(2 \lceil \sqrt{m} \rceil\) 种物品。或者说至多有\(2\sqrt{m}\)中物品数量大于等于1。
    证明: 考虑反证法。假设有\(2 \lceil \sqrt{m} \rceil + 1\)种物品,考虑构造出一种方案使得\(\sum_i |w_i|\)尽可能小,则应该是每种物品数量都为1,然后物品重量值域为\([-\lceil \sqrt{m} \rceil, \lceil \sqrt{m} \rceil]\)。此时有\(\sum_i |w_i| = 0 + 2 \sum_{i = 1}^{\lceil \sqrt{m} \rceil} i = m + \lceil \sqrt{m} \rceil\),与观察1相悖。

    观察3: 至多有 \(2 \lceil \frac{\sqrt{m}}{2^t} \rceil\) 种物品数量大于等于\(2^t\)
    证明:类似观察2的证明。

    现在问题转化成多重背包问题,可以二进制分组优化搞,假设有\(c\)种物品,第\(i\)种物品有\(k_i\)个,则复杂度为\(O(n + m \sum_{i = 1}^{c} \log k_i)\)。又有

    \[\sum_{i = 1} ^ c \log k_i = \sum_{x=0}^{+\infin} \sum_{i=1}^{c} [k_i \ge 2^x] = \sum_{x=0}^{+\infin} 2 \lceil \frac{\sqrt{m}}{2^t} \rceil = O(\sqrt{m}) \]

    所以总的时间复杂度为\(O(n + m\sqrt m)\)

    AC代码
    // Problem: G - Reversible Cards 2
    // Contest: AtCoder - UNICORN Programming Contest 2022(AtCoder Beginner Contest 269)
    // URL: https://atcoder.jp/contests/abc269/tasks/abc269_g
    // Memory Limit: 1024 MB
    // Time Limit: 3000 ms
    //
    // Powered by CP Editor (https://cpeditor.org)
    
    #include <bits/stdc++.h>
    
    #define CPPIO std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
    
    #ifdef BACKLIGHT
    #include "debug.h"
    #else
    #define logd(...) ;
    #define ASSERT(x) ;
    #define serialize() std::string("")
    #endif
    
    using i64 = int64_t;
    using u64 = uint64_t;
    
    void Initialize();
    void SolveCase(int Case);
    
    int main(int argc, char* argv[]) {
      CPPIO;
      int T = 1;
      // std::cin >> T;
      for (int t = 1; t <= T; ++t) {
        SolveCase(t);
      }
      return 0;
    }
    
    void Initialize() {}
    
    void SolveCase(int Case) {
      int n, m;
      std::cin >> n >> m;
    
      std::map<int, int> mp;
      int s = 0;
      for (int i = 0; i < n; ++i) {
        int a, b;
        std::cin >> a >> b;
        ++mp[b - a];
        s += a;
      }
    
      const int INF = 0x3f3f3f3f;
      std::vector<int> dp(m + 1, INF);
      dp[s] = 0;
      for (auto [d, c] : mp) {
        if (d == 0)
          continue;
    
        int x = 1;
        while (c) {
          x = std::min(x, c);
    
          if (d > 0) {
            for (int i = m; i >= x * d; --i)
              dp[i] = std::min(dp[i], dp[i - x * d] + x);
          } else {
            for (int i = 0; i - x * d <= m; ++i)
              dp[i] = std::min(dp[i], dp[i - x * d] + x);
          }
    
          c = c - x;
          x = x * 2;
        }
      }
    
      for (int i = 0; i <= m; ++i) {
        if (dp[i] == INF)
          dp[i] = -1;
        std::cout << dp[i] << "\n";
      }
    }
    
    

    Ex - Antichain

    很容易能得到一个 \(O(n^2)\) 的 DP ,但是复杂度过高。考虑使用 FFT 来优化。

    假设 \(f_u(x) = \sum_i a_i x^i\) 表示以 \(u\) 为根的子树的答案的生成函数,即以 \(u\) 为根的子树中有 \(a_i\) 种方案构造出 \(|S| = i\)\(S\)

    首先,对树进行轻重剖分,跑出重儿子和轻儿子。对于一棵树,考虑从根开始的重链,假设链上的节点自顶向下依次为 \(c_i, i = 1, 2, ..., k\)

    \[g_u(x) = \prod_{\substack{v \text{ is light child of } u}} f_v(x) \]

    那么对于每一个 \(c_i\), 递归计算出其轻儿子的\(f\),然后通过分治 FFT 计算出 \(g_{c_i}(x)\)

    考虑通过合并重链计算出整棵树的答案 \(f_{c_1}(x)\)

    假设选择了 \(c_i\),那么重链上其余点都不能选了, \(j \ge i\)\(g_{c_j}(x)\) 也不能选,而 \(j < i\)\(g_{c_j}(x)\) 可以随便选;当然也可以重链上的点一个都不选。由此有

    \[f_{c_1}(x) = \sum_{i = 1}^{k} x \prod_{j = 1}^{i - 1} g_{c_j}(x) + \prod_{i = 1}^{k} g_{c_j}(x) \]

    这个过程可以通过分治来搞,就把一段区间分成两半,前一半的生成函数为 \(L_1\)\(g_{c_j}(x)\) 的积为 \(R_1\) ;后一半的生成函数为 \(L_2\)\(g_{c_j}(x)\) 的积为 \(R_2\) 。则整个区间的生成函数为 \(L_1R_2 + L2\)\(g_{c_j}(x)\) 的积为 \(R_1R_2\)

    然后就是递归去搞就完事了,时间复杂度为 \(O(n \log^3n)\)。(复杂度证明待补)

    AC代码
    // Problem: Ex - Antichain
    // Contest: AtCoder - UNICORN Programming Contest 2022(AtCoder Beginner Contest 269)
    // URL: https://atcoder.jp/contests/abc269/tasks/abc269_h
    // Memory Limit: 1024 MB
    // Time Limit: 8000 ms
    //
    // Powered by CP Editor (https://cpeditor.org)
    
    #include <bits/stdc++.h>
    
    #define CPPIO std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
    
    #ifdef BACKLIGHT
    #include "debug.h"
    #else
    #define logd(...) ;
    #define ASSERT(x) ;
    #define serialize() std::string("")
    #endif
    
    using i64 = int64_t;
    using u64 = uint64_t;
    
    void Initialize();
    void SolveCase(int Case);
    
    int main(int argc, char* argv[]) {
      CPPIO;
      int T = 1;
      // std::cin >> T;
      for (int t = 1; t <= T; ++t) {
        SolveCase(t);
      }
      return 0;
    }
    
    void Initialize() {}
    
    namespace Polynomial {
    
    constexpr int P = 998244353, G = 3;
    std::vector<int> rev, roots{0, 1};
    
    int power(int a, int b) {
      int r = 1;
      while (b) {
        if (b & 1)
          r = 1ll * r * a % P;
        a = 1ll * a * a % P;
        b >>= 1;
      }
      return r;
    }
    
    void dft(std::vector<int>& a) {
      int n = a.size();
      if (int(rev.size()) != n) {
        int k = __builtin_ctz(n) - 1;
        rev.resize(n);
        for (int i = 0; i < n; ++i)
          rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
      }
      for (int i = 0; i < n; ++i)
        if (rev[i] < i)
          std::swap(a[i], a[rev[i]]);
      if (int(roots.size()) < n) {
        int k = __builtin_ctz(roots.size());
        roots.resize(n);
        while ((1 << k) < n) {
          int e = power(G, (P - 1) >> (k + 1));
          for (int i = 1 << (k - 1); i < (1 << k); ++i) {
            roots[2 * i] = roots[i];
            roots[2 * i + 1] = 1ll * roots[i] * e % P;
          }
          ++k;
        }
      }
      for (int k = 1; k < n; k *= 2) {
        for (int i = 0; i < n; i += 2 * k) {
          for (int j = 0; j < k; ++j) {
            int u = a[i + j];
            int v = 1ll * a[i + j + k] * roots[k + j] % P;
            int x = u + v;
            if (x >= P)
              x -= P;
            a[i + j] = x;
            x = u - v;
            if (x < 0)
              x += P;
            a[i + j + k] = x;
          }
        }
      }
    }
    
    void idft(std::vector<int>& a) {
      int n = a.size();
      std::reverse(a.begin() + 1, a.end());
      dft(a);
      int inv = power(n, P - 2);
      for (int i = 0; i < n; ++i)
        a[i] = 1ll * a[i] * inv % P;
    }
    
    struct poly {
      std::vector<int> a;
    
      poly() {}
      poly(int f0) { a = {f0}; }
      poly(const std::vector<int>& f) : a(f) {
        while (!a.empty() && !a.back())
          a.pop_back();
      }
      poly(const std::vector<int>& f, int n) : a(f) { a.resize(n); }
      int size() const { return a.size(); }
      int deg() const { return a.size() - 1; }
      int operator[](int idx) const {
        if (idx < 0 || idx >= size())
          return 0;
        return a[idx];
      }
      std::string to_string() const {
        std::stringstream ss;
        ss << "poly: ";
        for (int v : a)
          ss << v << " ";
        return ss.str();
      }
      poly mulxk(int k) const {
        auto b = a;
        b.insert(b.begin(), k, 0);
        return poly(b);
      }
      poly modxk(int k) const {
        k = std::min(k, size());
        return poly(std::vector<int>(a.begin(), a.begin() + k));
      }
      poly alignxk(int k) const { return poly(a, k); }
      poly divxk(int k) const {
        if (size() <= k)
          return poly();
        return poly(std::vector<int>(a.begin() + k, a.end()));
      }
      friend poly operator+(const poly& f, const poly& g) {
        int k = std::max(f.size(), g.size());
        std::vector<int> res(k);
        for (int i = 0; i < k; ++i) {
          res[i] = f[i] + g[i];
          if (res[i] >= P)
            res[i] -= P;
        }
        return poly(res);
      }
      friend poly operator-(const poly& f, const poly& g) {
        int k = std::max(f.size(), g.size());
        std::vector<int> res(k);
        for (int i = 0; i < k; ++i) {
          res[i] = f[i] - g[i];
          if (res[i] < 0)
            res[i] += P;
        }
        return poly(res);
      }
      friend poly operator*(const poly& f, const poly& g) {
        int sz = 1, k = f.size() + g.size() - 1;
        while (sz < k)
          sz *= 2;
        std::vector<int> p = f.a, q = g.a;
        p.resize(sz);
        q.resize(sz);
        dft(p);
        dft(q);
        for (int i = 0; i < sz; ++i)
          p[i] = 1ll * p[i] * q[i] % P;
        idft(p);
        return poly(p);
      }
      friend poly operator/(const poly& f, const poly& g) { return f.divide(g).first; }
      friend poly operator%(const poly& f, const poly& g) { return f.divide(g).second; }
      poly& operator+=(const poly& f) { return (*this) = (*this) + f; }
      poly& operator-=(const poly& f) { return (*this) = (*this) - f; }
      poly& operator*=(const poly& f) { return (*this) = (*this) * f; }
      poly& operator/=(const poly& f) { return (*this) = divide(f).first; }
      poly& operator%=(const poly& f) { return (*this) = divide(f).second; }
      poly derivative() const {
        if (a.empty())
          return poly();
        int n = a.size();
        std::vector<int> res(n - 1);
        for (int i = 0; i < n - 1; ++i)
          res[i] = 1ll * (i + 1) * a[i + 1] % P;
        return poly(res);
      }
      poly integral() const {
        if (a.empty())
          return poly();
        int n = a.size();
        std::vector<int> res(n + 1);
        for (int i = 0; i < n; ++i)
          res[i + 1] = 1ll * a[i] * power(i + 1, P - 2) % P;
        return poly(res);
      }
      poly rev() const { return poly(std::vector<int>(a.rbegin(), a.rend())); }
      poly inv(int m) const {
        poly x(power(a[0], P - 2));
        int k = 1;
        while (k < m) {
          k *= 2;
          x = (x * (2 - modxk(k) * x)).modxk(k);
        }
        return x.modxk(m);
      }
      poly log(int m) const { return (derivative() * inv(m)).integral().modxk(m); }
      poly exp(int m) const {
        poly x(1);
        int k = 1;
        while (k < m) {
          k *= 2;
          x = (x * (1 - x.log(k) + modxk(k))).modxk(k);
        }
        return x.modxk(m);
      }
      poly sqrt(int m) const {
        poly x(1);
        int k = 1;
        while (k < m) {
          k *= 2;
          x = (x + (modxk(k) * x.inv(k)).modxk(k)) * ((P + 1) / 2);
        }
        return x.modxk(m);
      }
      poly sin() const {
        int i = power(G, (P - 1) / 4);
        poly p = i * (*this);
        p = p.exp(p.size());
    
        poly q = (P - i) * (*this);
        q = q.exp(q.size());
    
        poly r = (p - q) * power(2 * i % P, P - 2);
        return r;
      }
      poly cos() const {
        int i = power(G, (P - 1) / 4);
        poly p = i * (*this);
        p = p.exp(p.size());
    
        poly q = (P - i) * (*this);
        q = q.exp(q.size());
    
        poly r = (p + q) * power(2, P - 2);
        return r;
      }
      poly tan() const { return sin() / cos(); }
      poly cot() const { return cos() / sin(); }
      poly arcsin() {
        poly sq = (*this) * (*this).modxk(size());
        for (int i = 0; i < size(); ++i)
          sq.a[i] = sq.a[i] ? P - sq.a[i] : 0;
        sq.a[0] = 1 + sq.a[0];
        if (sq.a[0] >= P)
          sq.a[0] -= P;
        poly r = (derivative() * sq.sqrt(size()).inv(size())).integral();
        return r;
      }
      poly arccos() {
        poly r = arcsin();
        for (int i = 0; i < size(); ++i)
          r.a[i] = r.a[i] ? P - r.a[i] : 0;
        return r;
      }
      poly arctan() {
        poly sq = (*this) * (*this).modxk(size());
        sq.a[0] = 1 + sq.a[0];
        if (sq.a[0] >= P)
          sq.a[0] -= P;
        poly r = (derivative() * sq.inv(size())).integral();
        return r;
      }
      poly arccot() {
        poly r = arctan();
        for (int i = 0; i < size(); ++i)
          r.a[i] = r.a[i] ? P - r.a[i] : 0;
        return r;
      }
      poly mulT(const poly& b) const {
        if (b.size() == 0)
          return poly();
        int n = b.size();
        return ((*this) * b.rev()).divxk(n - 1);
      }
      std::pair<poly, poly> divide(const poly& g) const {
        int n = a.size(), m = g.size();
        if (n < m)
          return make_pair(poly(), a);
    
        poly fR = rev();
        poly gR = g.rev().alignxk(n - m + 1);
        poly gRI = gR.inv(gR.size());
    
        poly qR = (fR * gRI).modxk(n - m + 1);
    
        poly q = qR.rev();
    
        poly r = ((*this) - g * q).modxk(m - 1);
    
        return std::make_pair(q, r);
      }
      std::vector<int> eval(std::vector<int> x) const {
        if (size() == 0)
          return std::vector<int>(x.size(), 0);
        const int n = std::max(int(x.size()), size());
        std::vector<poly> q(4 * n);
        std::vector<int> ans(x.size());
        x.resize(n);
        std::function<void(int, int, int)> build = [&](int p, int l, int r) {
          if (r - l == 1) {
            q[p] = std::vector<int>{1, (P - x[l]) % P};
          } else {
            int m = (l + r) / 2;
            build(2 * p, l, m);
            build(2 * p + 1, m, r);
            q[p] = q[2 * p] * q[2 * p + 1];
          }
        };
        build(1, 0, n);
        std::function<void(int, int, int, const poly&)> work = [&](int p, int l, int r,
                                                                   const poly& num) {
          if (r - l == 1) {
            if (l < int(ans.size()))
              ans[l] = num[0];
          } else {
            int m = (l + r) / 2;
            work(2 * p, l, m, num.mulT(q[2 * p + 1]).modxk(m - l));
            work(2 * p + 1, m, r, num.mulT(q[2 * p]).modxk(r - m));
          }
        };
        work(1, 0, n, mulT(q[1].inv(n)));
        return ans;
      }
    };
    
    }  // namespace Polynomial
    using Polynomial::poly;
    
    void SolveCase(int Case) {
      int n;
      std::cin >> n;
    
      std::vector<int> p(n);
      std::vector<std::vector<int>> g(n);
      for (int i = 1; i < n; ++i) {
        std::cin >> p[i];
        --p[i];
        g[p[i]].push_back(i);
      }
    
      std::vector<int> sz(n), heavy_son(n);
      std::function<void(int)> dfs1 = [&](int u) {
        sz[u] = 1;
        heavy_son[u] = -1;
    
        for (int v : g[u]) {
          dfs1(v);
          sz[u] += sz[v];
          if (heavy_son[u] == -1 || sz[v] > sz[heavy_son[u]])
            heavy_son[u] = v;
        }
      };
      dfs1(0);
    
      std::vector<int> top(n);
      std::function<void(int, int)> dfs2 = [&](int u, int k) {
        top[u] = k;
        if (heavy_son[u] != -1)
          dfs2(heavy_son[u], k);
        for (int v : g[u]) {
          if (v == heavy_son[u])
            continue;
          dfs2(v, v);
        }
      };
      dfs2(0, 0);
    
      std::function<poly(const std::vector<poly>&, int, int)> merge_light =
          [&](const std::vector<poly>& a, int l, int r) {
            if (l == r)
              return a[l];
    
            int m = (l + r) >> 1;
            auto L = merge_light(a, l, m);
            auto R = merge_light(a, m + 1, r);
            return L * R;
          };
    
      std::function<std::pair<poly, poly>(const std::vector<poly>&, int, int)> merge_heavy =
          [&](const std::vector<poly>& a, int l, int r) {
            if (l == r)
              return std::make_pair(poly{1}, a[l]);
    
            int m = (l + r) >> 1;
            auto [L1, R1] = merge_heavy(a, l, m);
            auto [L2, R2] = merge_heavy(a, m + 1, r);
            auto res = std::make_pair(L1 * R2 + L2, R1 * R2);
            return res;
          };
    
      std::function<poly(int)> dfs3 = [&](int u) {
        std::vector<poly> heavy_chain;
    
        int p = u;
        while (p != -1) {
          std::vector<poly> light_children;
          light_children.push_back({1});
          for (int v : g[p]) {
            if (v == heavy_son[p])
              continue;
    
            light_children.push_back(dfs3(v));
          }
          auto gp = merge_light(light_children, 0, light_children.size() - 1);
          heavy_chain.push_back(gp);
    
          p = heavy_son[p];
        }
        std::reverse(heavy_chain.begin(), heavy_chain.end());
    
        auto [fi, se] = merge_heavy(heavy_chain, 0, heavy_chain.size() - 1);
        auto r = fi * poly({0, 1}) + se;
        return r;
      };
      auto ans = dfs3(0).a;
      ans.resize(n + 1);
    
      for (int i = 1; i <= n; ++i)
        std::cout << ans[i] << "\n";
    }
    
    
  • 相关阅读:
    深入浅出Vue基于“依赖收集”的响应式原理(转)
    10道初级渗透测试面试题,测测你离职场有多远?
    CTF必备技能丨Linux Pwn入门教程——格式化字符串漏洞
    CTF必备技能丨Linux Pwn入门教程——利用漏洞获取libc
    CTF必备技能丨Linux Pwn入门教程——调整栈帧的技巧
    CTF必备技能丨Linux Pwn入门教程——ROP技术(下)
    用实力燃爆暑期丨i春秋渗透测试工程师线下就业班开课了!
    CTF必备技能丨Linux Pwn入门教程——ROP技术(上)
    CTF必备技能丨Linux Pwn入门教程——ShellCode
    CTF必备技能丨Linux Pwn入门教程——栈溢出基础
  • 原文地址:https://www.cnblogs.com/zengzk/p/16704065.html
Copyright © 2020-2023  润新知