题意
给出一个数组(a),输出满足(min(b_1, b_2) le min(b_2, b_3) le min(b_3, b_4) dots)的子序列(b)的最长长度。
解法
观察
首先想到LIS,然后这题和LIS的区别就是,两个LIS的元素中间可以插入一个更大的元素。
然后这个性质转化一下,就是:假设一个LaIS以(a_i)结尾,则如果(a_i le a_j)则可以在其结尾插入(a_j);或者,若存在(i < k < j),(a_i le a_j,a_k ge a_j),则可以在其结尾插入(a_k, a_j)。
具体做法
根据这个性质,假设(dp_i)为以(a_i)结尾的最长长度,(f_i)为以(i)结尾的最长长度。
第一种转移
第一种转移比较简单,就是
[dp_i = max_{0 le v le a_i} { f_v } + 1
]
第二种转移
第二种转移复杂一点,如果有(j < i)且(a_j ge a_i),则可以通过第二种转移更新答案,但是如果在(i)处更新答案,则有可能会违反子序列的顺序不变性质,这个是不正确的,所以这种转移要提前到(j)处做。
而且因为至多只能多插一个,所以不会有比用满足条件且离得最近的(j)来转移更优的方案。所以就可以用一个单调栈处理出所有(i)处对应的(j),且反过来(j)对应的(i)的集和(nxt_j)也可以求出来。
至此,第二种转移方式就是
[forall x in nxt_j ext{ : } dp_x = max_{0 le v le x} { f_v } + 2
]
最后
每次处理完(dp_i)之后,应该要用(dp_i)去更新(f_{a_i})。
最后的答案就是(max_{0 le v le n} { f_v })。
优化
两种转移方式都用到了一个前缀最大值查询以及单点更新最大值。这个就是线段树基本功能了。
然后因为只有前缀最大值查询,而不是区间最大值查询,不涉及区间信息可减性,所以树状数组也可以处理。
AC代码
#include <bits/stdc++.h>
using namespace std;
using ll = int64_t;
using ull = uint64_t;
using uint = uint32_t;
using VI = vector<int>;
using VL = vector<ll>;
using VVI = vector<vector<int>>;
using VVL = vector<vector<ll>>;
using PII = pair<int,int>;
using PLL = pair<ll, ll>;
#define REP(i, _, __) for (int i = (_); i < (__); ++i)
#define PER(i, _, __) for (int i = (_-1); i >= (__); --i)
#define FOR(i, _, __) for (int i = (_); i <= (__); ++i)
#define ROF(i, _, __) for (int i = (_); i >= (__); --i)
#define FC(v, V) for (const auto& v: V)
#define FE(v, V) for (auto& v: V)
#define EB emplace_back
#define PB push_back
#define MP make_pair
#define FI first
#define SE second
#define SZ(x) (int((x).size()))
#define ALL(x) (x).begin(),(x).end()
#define LLA(x) (x).rbegin(),(x).rend()
const double PI = acos(-1.0);
namespace Backlight {
const int __BUFFER_SIZE__ = 1 << 20;
bool NEOF = 1;
int __top;
char __buf[__BUFFER_SIZE__], *__p1 = __buf, *__p2 = __buf, __stk[996];
template<typename T>
T MIN(T a, T b) { return min(a, b); }
template<typename First, typename... Rest>
First MIN(First f, Rest... r) { return min(f, MIN(r...)); }
template<typename T>
T MAX(T a, T b) { return max(a, b); }
template<typename First, typename... Rest>
First MAX(First f, Rest... r) { return max(f, MAX(r...)); }
template<typename T>
void updMin(T& a, T b) { if (a > b) a = b; }
template<typename T>
void updMax(T& a, T b) { if (a < b) a = b; }
inline char nc() {
return __p1 == __p2 && NEOF && (__p2 = (__p1 = __buf) + fread(__buf, 1, __BUFFER_SIZE__, stdin), __p1 == __p2) ? (NEOF = 0, EOF) : *__p1++;
}
template<typename T>
inline bool read(T &x) {
char c = nc();
bool f = 0; x = 0;
while (!isdigit(c)) c == '-' && (f = 1), c = nc();
while (isdigit(c)) x = (x << 3) + (x << 1) + (c ^ 48), c = nc();
if (f) x = -x;
return NEOF;
}
inline bool need(char c) { return (c != '
') && (c != ' '); }
inline bool read(char& a) {
while ((a = nc()) && need(a) && NEOF) ;
return NEOF;
}
inline bool read(char *a) {
while ((*a = nc()) && need(*a) && NEOF) ++a;
*a = ' ';
return NEOF;
}
inline bool read(double &x) {
bool f = 0; char c = nc(); x = 0;
while (!isdigit(c)) { f |= (c == '-'); c = nc(); }
while (isdigit(c)) { x = x * 10.0 + (c ^ 48); c = nc(); }
if (c == '.') {
double temp = 1; c = nc();
while (isdigit(c)) { temp = temp / 10.0; x = x + temp * (c ^ 48); c = nc(); }
}
if (f) x = -x;
return NEOF;
}
template<typename First, typename... Rest>
inline bool read(First &f, Rest &... r) {
read(f);
return read(r...);
}
template<typename T>
inline void print(T x) {
if (x < 0) putchar('-'), x = -x;
if (x == 0) { putchar('0'); return; }
__top = 0;
while(x) {
__stk[++__top] = x % 10 + '0';
x /= 10;
}
while(__top) {
putchar(__stk[__top]);
--__top;
}
}
template<typename First, typename... Rest>
inline void print(First f, Rest... r) {
print(f); putchar(' ');
print(r...);
}
template<typename T>
inline void println(T x) {
print(x);
putchar('
');
}
template<typename First, typename... Rest>
inline void println(First f, Rest... r) {
print(f); putchar(' ');
println(r...);
}
template<typename T>
inline void _dbg(const char *format, T value) { cerr << format << '=' << value << endl; }
template<typename First, typename... Rest>
inline void _dbg(const char *format, First f, Rest... r) {
while(*format != ',') cerr << *format++;
cerr << '=' << f << ", ";
_dbg(format + 1, r...);
}
template<typename T>
ostream &operator<<(ostream& os, vector<T> V) {
os << "[ "; for (auto v : V) os << v << ","; return os << " ]";
}
template<typename T>
ostream &operator<<(ostream& os, set<T> V) {
os << "[ "; for (auto v : V) os << v << ","; return os << " ]";
}
template<typename T>
ostream &operator<<(ostream& os, multiset<T> V) {
os << "[ "; for (auto v : V) os << v << ","; return os << " ]";
}
template<typename T1, typename T2>
ostream &operator<<(ostream& os, map<T1, T2> V) {
os << "[ "; for (auto v : V) os << v << ","; return os << " ]";
}
template<typename L, typename R>
ostream &operator<<(ostream &os, pair<L, R> P) {
return os << "(" << P.first << "," << P.second << ")";
}
#ifdef BACKLIGHT
#define debug(...) cerr << " 33[31m" << "[" << __LINE__ << "] : "; _dbg(#__VA_ARGS__, __VA_ARGS__); cerr << " 33[0m";
// #define debug(...) _dbg(#__VA_ARGS__, __VA_ARGS__);
#else
#define debug(...)
#endif
}
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
int rnd(int l, int r) { return l + rng() % (r - l + 1); }
using namespace Backlight;
const int N = 5e5 + 5;
const int M = 3e6 + 5;
const int K = 1e7 + 5;
const int MOD = 1e9 + 7; // 998244353 1e9 + 7
const int INF = 0x3f3f3f3f; // 1e9 + 7 0x3f3f3f3f
const ll LLINF = 0x3f3f3f3f3f3f3f3f; // 1e18 + 9 0x3f3f3f3f3f3f3f3f
const double eps = 1e-8;
struct FenwickTree {
int n;
vector<int> c;
FenwickTree(int _n) : n(_n), c(n + 1) {}
inline int lb(int x) { return x & -x; }
void upd(int x, int v) {
for (; x <= n; x += lb(x))
updMax(c[x], v);
}
int qry(int x) {
int r = 0;
for(; x; x -= lb(x))
updMax(r, c[x]);
return r;
}
};
int n, a[N], dp[N];
int top, s[N], pre[N];
vector<int> nxt[N];
void solve(int Case) { // printf("Case #%d: ", Case);
read(n);
FOR(i, 1, n) nxt[i].clear(), dp[i] = 0;
FOR(i, 1, n) read(a[i]);
top = 0;
FOR(i, 1, n) {
while(top > 0 && a[i] >= a[s[top]]) --top;
pre[i] = s[top];
s[++top] = i;
if (pre[i] != 0) nxt[pre[i]].PB(i);
}
FenwickTree t(n);
FOR(i, 1, n) {
updMax(dp[i], t.qry(a[i]) + 1);
for (int x: nxt[i]) {
updMax(dp[x], t.qry(a[x]) + 2);
}
t.upd(a[i], dp[i]);
}
println(t.qry(n));
}
int main() {
#ifdef BACKLIGHT
freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
auto begin = std::chrono::steady_clock::now();
#endif
// ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
int T = 1;
read(T);
for (int _ = 1; _ <= T; _++) solve(_);
#ifdef BACKLIGHT
auto end = std::chrono::steady_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end - begin);
cerr << " 33[32mTime Elasped: " << duration.count() << " ms 33[0m" << endl;
#endif
return 0;
}