• stl_list.h


    stl_list.h 
    // Filename:    stl_list.h
    
    // Comment By:  凝霜
    // E-mail:      mdl2009@vip.qq.com
    // Blog:        http://blog.csdn.net/mdl13412
    
    /*
     *
     * Copyright (c) 1994
     * Hewlett-Packard Company
     *
     * Permission to use, copy, modify, distribute and sell this software
     * and its documentation for any purpose is hereby granted without fee,
     * provided that the above copyright notice appear in all copies and
     * that both that copyright notice and this permission notice appear
     * in supporting documentation.  Hewlett-Packard Company makes no
     * representations about the suitability of this software for any
     * purpose.  It is provided "as is" without express or implied warranty.
     *
     *
     * Copyright (c) 1996,1997
     * Silicon Graphics Computer Systems, Inc.
     *
     * Permission to use, copy, modify, distribute and sell this software
     * and its documentation for any purpose is hereby granted without fee,
     * provided that the above copyright notice appear in all copies and
     * that both that copyright notice and this permission notice appear
     * in supporting documentation.  Silicon Graphics makes no
     * representations about the suitability of this software for any
     * purpose.  It is provided "as is" without express or implied warranty.
     */
    
    /* NOTE: This is an internal header file, included by other STL headers.
     *   You should not attempt to use it directly.
     */
    
    #ifndef __SGI_STL_INTERNAL_LIST_H
    #define __SGI_STL_INTERNAL_LIST_H
    
    __STL_BEGIN_NAMESPACE
    
    #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
    #pragma set woff 1174
    #endif
    
    ////////////////////////////////////////////////////////////////////////////////
    // list结点, 提供双向访问能力
    ////////////////////////////////////////////////////////////////////////////////
    //  --------           --------           --------           --------
    //  | next |---------->| next |---------->| next |---------->| next |
    //  --------           --------           --------           --------
    //  | prev |<----------| prev |<----------| prev |<----------| prev |
    //  --------           --------           --------           --------
    //  | data |           | data |           | data |           | data |
    //  --------           --------           --------           --------
    ////////////////////////////////////////////////////////////////////////////////
    
    template <class T>
    struct __list_node
    {
      typedef void* void_pointer;
      void_pointer next;
      void_pointer prev;
      T data;
    };
    
    // 至于为什么不使用默认参数, 这个是因为有一些编译器不能提供推导能力,
    // 而作者又不想维护两份代码, 故不使用默认参数
    template<class T, class Ref, class Ptr>
    struct __list_iterator
    {
      // 标记为'STL标准强制要求'的typedefs用于提供iterator_traits<I>支持
      typedef __list_iterator<T, T&, T*>             iterator;   // STL标准强制要求
      typedef __list_iterator<T, const T&, const T*> const_iterator;
      typedef __list_iterator<T, Ref, Ptr>           self;
    
      typedef bidirectional_iterator_tag iterator_category;
      typedef T value_type;                                 // STL标准强制要求
      typedef Ptr pointer;                                  // STL标准强制要求
      typedef Ref reference;                                // STL标准强制要求
      typedef __list_node<T>* link_type;
      typedef size_t size_type;
      typedef ptrdiff_t difference_type;                    // STL标准强制要求
    
      // 这个是迭代器实际管理的资源指针
      link_type node;
    
      __list_iterator(link_type x) : node(x) {}
      __list_iterator() {}
      __list_iterator(const iterator& x) : node(x.node) {}
    
      // 在STL算法中需要迭代器提供支持
      bool operator==(const self& x) const { return node == x.node; }
      bool operator!=(const self& x) const { return node != x.node; }
    
      // 重载operator *, 返回实际维护的数据
      reference operator*() const { return (*node).data; }
    
    #ifndef __SGI_STL_NO_ARROW_OPERATOR
      // 如果支持'->'则重载之
      // 解释一下为什么要返回地址
      // class A
      // {
      // public:
      //    // ...
      //    void fun();
      //    // ...
      // }
      // __list_iterator<A, A&, A*> iter(new A)
      // iter->fun();
      // 这就相当于调用(iter.operator())->fun();
      // 经过重载使其行为和原生指针一致
      pointer operator->() const { return &(operator*()); }
    #endif /* __SGI_STL_NO_ARROW_OPERATOR */
    
      // 前缀自加
      self& operator++()
      {
        node = (link_type)((*node).next);
        return *this;
      }
    
      // 后缀自加, 需要先产生自身的一个副本, 然会再对自身操作, 最后返回副本
      self operator++(int)
      {
        self tmp = *this;
        ++*this;
        return tmp;
      }
    
      self& operator--()
      {
        node = (link_type)((*node).prev);
        return *this;
      }
    
      self operator--(int)
      {
        self tmp = *this;
        --*this;
        return tmp;
      }
    };
    
    // 如果编译器支持模板类偏特化那么就不需要提供以下traits函数
    // 直接使用<stl_iterator.h>中的
    // template <class Iterator>
    // struct iterator_traits
    #ifndef __STL_CLASS_PARTIAL_SPECIALIZATION
    
    template <class T, class Ref, class Ptr>
    inline bidirectional_iterator_tag
    iterator_category(const __list_iterator<T, Ref, Ptr>&) {
      return bidirectional_iterator_tag();
    }
    
    template <class T, class Ref, class Ptr>
    inline T*
    value_type(const __list_iterator<T, Ref, Ptr>&) {
      return 0;
    }
    
    template <class T, class Ref, class Ptr>
    inline ptrdiff_t*
    distance_type(const __list_iterator<T, Ref, Ptr>&) {
      return 0;
    }
    
    #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
    
    ////////////////////////////////////////////////////////////////////////////////
    // 链表本身成环, 且是双向链表, 这样计算begin()和end()是常数时间
    ////////////////////////////////////////////////////////////////////////////////
    //       end()              头结点             begin()
    //         ↓                  ↓                  ↓
    //      --------           --------           --------           --------
    // ---->| next |---------->| next |---------->| next |---------->| next |------
    // |    --------           --------           --------           --------     |
    // |  --| prev |<----------| prev |<----------| prev |<----------| prev |<--| |
    // |  | --------           --------           --------           --------   | |
    // |  | | data |           | data |           | data |           | data |   | |
    // |  | --------           --------           --------           --------   | |
    // |  |                                                                     | |
    // |  | --------           --------           --------           --------   | |
    // ---|-| next |<----------| next |<----------| next |<----------| next |<--|--
    //    | --------           --------           --------           --------   |
    //    ->| prev |---------->| prev |---------->| prev |---------->| prev |----
    //      --------           --------           --------           --------
    //      | data |           | data |           | data |           | data |
    //      --------           --------           --------           --------
    ////////////////////////////////////////////////////////////////////////////////
    
    // 默认allocator为alloc, 其具体使用版本请参照<stl_alloc.h>
    template <class T, class Alloc = alloc>
    class list
    {
    protected:
      typedef void* void_pointer;
      typedef __list_node<T> list_node;
    
      // 这个提供STL标准的allocator接口
      typedef simple_alloc<list_node, Alloc> list_node_allocator;
    
    public:
      typedef T value_type;
      typedef value_type* pointer;
      typedef const value_type* const_pointer;
      typedef value_type& reference;
      typedef const value_type& const_reference;
      typedef list_node* link_type;
      typedef size_t size_type;
      typedef ptrdiff_t difference_type;
    
    public:
      typedef __list_iterator<T, T&, T*>             iterator;
      typedef __list_iterator<T, const T&, const T*> const_iterator;
    
    #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
      typedef reverse_iterator<const_iterator> const_reverse_iterator;
      typedef reverse_iterator<iterator> reverse_iterator;
    #else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
      typedef reverse_bidirectional_iterator<const_iterator, value_type,
      const_reference, difference_type>
      const_reverse_iterator;
      typedef reverse_bidirectional_iterator<iterator, value_type, reference,
      difference_type>
      reverse_iterator;
    #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
    
    protected:
      // 分配一个新结点, 注意这里并不进行构造,
      // 构造交给全局的construct, 见<stl_stl_uninitialized.h>
      link_type get_node() { return list_node_allocator::allocate(); }
    
      // 释放指定结点, 不进行析构, 析构交给全局的destroy,
      // 见<stl_stl_uninitialized.h>
      void put_node(link_type p) { list_node_allocator::deallocate(p); }
    
      // 创建结点, 首先分配内存, 然后进行构造
      // 注: commit or rollback
      link_type create_node(const T& x)
      {
        link_type p = get_node();
        __STL_TRY {
          construct(&p->data, x);
        }
        __STL_UNWIND(put_node(p));
        return p;
      }
    
      // 析构结点元素, 并释放内存
      void destroy_node(link_type p)
      {
        destroy(&p->data);
        put_node(p);
      }
    
    protected:
      // 用于空链表的建立
      void empty_initialize()
      {
        node = get_node();
        node->next = node;
        node->prev = node;
      }
    
      // 创建值为value共n个结点的链表
      // 注: commit or rollback
      void fill_initialize(size_type n, const T& value)
      {
        empty_initialize();
        __STL_TRY {
          // 此处插入操作时间复杂度O(1)
          insert(begin(), n, value);
        }
        __STL_UNWIND(clear(); put_node(node));
      }
    
    // 以一个区间初始化链表
    // 注: commit or rollback
    #ifdef __STL_MEMBER_TEMPLATES
      template <class InputIterator>
      void range_initialize(InputIterator first, InputIterator last)
      {
        empty_initialize();
        __STL_TRY {
          insert(begin(), first, last);
        }
        __STL_UNWIND(clear(); put_node(node));
      }
    #else  /* __STL_MEMBER_TEMPLATES */
      void range_initialize(const T* first, const T* last) {
        empty_initialize();
        __STL_TRY {
          insert(begin(), first, last);
        }
        __STL_UNWIND(clear(); put_node(node));
      }
      void range_initialize(const_iterator first, const_iterator last) {
        empty_initialize();
        __STL_TRY {
          insert(begin(), first, last);
        }
        __STL_UNWIND(clear(); put_node(node));
      }
    #endif /* __STL_MEMBER_TEMPLATES */
    
    protected:
      // 好吧, 这个是链表头结点, 其本身不保存数据
      link_type node;
    
    public:
      list() { empty_initialize(); }
    
      iterator begin() { return (link_type)((*node).next); }
      const_iterator begin() const { return (link_type)((*node).next); }
    
      // 链表成环, 当指所以头节点也就是end
      iterator end() { return node; }
      const_iterator end() const { return node; }
      reverse_iterator rbegin() { return reverse_iterator(end()); }
      const_reverse_iterator rbegin() const {
        return const_reverse_iterator(end());
      }
      reverse_iterator rend() { return reverse_iterator(begin()); }
      const_reverse_iterator rend() const {
        return const_reverse_iterator(begin());
      }
    
      // 头结点指向自身说明链表中无元素
      bool empty() const { return node->next == node; }
    
      // 使用全局函数distance()进行计算, 时间复杂度O(n)
      size_type size() const
      {
        size_type result = 0;
        distance(begin(), end(), result);
        return result;
      }
    
      size_type max_size() const { return size_type(-1); }
      reference front() { return *begin(); }
      const_reference front() const { return *begin(); }
      reference back() { return *(--end()); }
      const_reference back() const { return *(--end()); }
      void swap(list<T, Alloc>& x) { __STD::swap(node, x.node); }
    
    ////////////////////////////////////////////////////////////////////////////////
    // 在指定位置插入元素
    ////////////////////////////////////////////////////////////////////////////////
    //       insert(iterator position, const T& x)
    ////                 create_node(x)
    //                 p = get_node();-------->list_node_allocator::allocate();
    //                 construct(&p->data, x);
    ////            tmp->next = position.node;
    //            tmp->prev = position.node->prev;
    //            (link_type(position.node->prev))->next = tmp;
    //            position.node->prev = tmp;
    ////////////////////////////////////////////////////////////////////////////////
    
      iterator insert(iterator position, const T& x)
      {
        link_type tmp = create_node(x);
        tmp->next = position.node;
        tmp->prev = position.node->prev;
        (link_type(position.node->prev))->next = tmp;
        position.node->prev = tmp;
        return tmp;
      }
    
      iterator insert(iterator position) { return insert(position, T()); }
    #ifdef __STL_MEMBER_TEMPLATES
      template <class InputIterator>
      void insert(iterator position, InputIterator first, InputIterator last);
    #else /* __STL_MEMBER_TEMPLATES */
      void insert(iterator position, const T* first, const T* last);
      void insert(iterator position,
                  const_iterator first, const_iterator last);
    #endif /* __STL_MEMBER_TEMPLATES */
    
      // 指定位置插入n个值为x的元素, 详细解析见实现部分
      void insert(iterator pos, size_type n, const T& x);
      void insert(iterator pos, int n, const T& x)
      {
        insert(pos, (size_type)n, x);
      }
      void insert(iterator pos, long n, const T& x)
      {
        insert(pos, (size_type)n, x);
      }
    
      // 在链表前端插入结点
      void push_front(const T& x) { insert(begin(), x); }
      // 在链表最后插入结点
      void push_back(const T& x) { insert(end(), x); }
    
      // 擦除指定结点
      iterator erase(iterator position)
      {
        link_type next_node = link_type(position.node->next);
        link_type prev_node = link_type(position.node->prev);
        prev_node->next = next_node;
        next_node->prev = prev_node;
        destroy_node(position.node);
        return iterator(next_node);
      }
    
      // 擦除一个区间的结点, 详细解析见实现部分
      iterator erase(iterator first, iterator last);
    
      void resize(size_type new_size, const T& x);
      void resize(size_type new_size) { resize(new_size, T()); }
      void clear();
    
      // 删除链表第一个结点
      void pop_front() { erase(begin()); }
      // 删除链表最后一个结点
      void pop_back()
      {
        iterator tmp = end();
        erase(--tmp);
      }
    
      list(size_type n, const T& value) { fill_initialize(n, value); }
      list(int n, const T& value) { fill_initialize(n, value); }
      list(long n, const T& value) { fill_initialize(n, value); }
    
      explicit list(size_type n) { fill_initialize(n, T()); }
    
    // 以一个区间元素为蓝本创建链表
    #ifdef __STL_MEMBER_TEMPLATES
      template <class InputIterator>
      list(InputIterator first, InputIterator last)
      {
        range_initialize(first, last);
      }
    
    #else /* __STL_MEMBER_TEMPLATES */
      list(const T* first, const T* last) { range_initialize(first, last); }
      list(const_iterator first, const_iterator last) {
        range_initialize(first, last);
      }
    #endif /* __STL_MEMBER_TEMPLATES */
    
      // 复制构造
      list(const list<T, Alloc>& x)
      {
        range_initialize(x.begin(), x.end());
      }
    
      ~list()
      {
        // 释放所有结点  // 使用全局函数distance()进行计算, 时间复杂度O(n)
      size_type size() const
      {
        size_type result = 0;
        distance(begin(), end(), result);
        return result;
      }
        clear();
        // 释放头结点
        put_node(node);
      }
    
      list<T, Alloc>& operator=(const list<T, Alloc>& x);
    
    protected:
    
    ////////////////////////////////////////////////////////////////////////////////
    // 将[first, last)区间插入到position
    // 如果last == position, 则相当于链表不变化, 不进行操作
    ////////////////////////////////////////////////////////////////////////////////
    // 初始状态
    //                   first                             last
    //                     ↓                                 ↓
    //      --------   --------   --------     --------   --------   --------
    //      | next |-->| next |-->| next |     | next |-->| next |-->| next |
    //  ... --------   --------   -------- ... --------   --------   -------- ...
    //      | prev |<--| prev |<--| prev |     | prev |<--| prev |<--| prev |
    //      --------   --------   --------     --------   --------   --------
    //
    //                           position
    ////      --------   --------   --------   --------   --------   --------
    //      | next |-->| next |-->| next |-->| next |-->| next |-->| next |
    //  ... --------   --------   --------   --------   --------   -------- ...
    //      | prev |<--| prev |<--| prev |<--| prev |<--| prev |<--| prev |
    //      --------   --------   --------   --------   --------   --------
    //
    // 操作完成后状态
    //                           first
    //                             |
    //               --------------|--------------------------------------
    //               | ------------|------------------------------------ |   last
    //               | |           ↓                                   | |     ↓
    //      -------- | |        --------   --------     --------       | |  --------   --------
    //      | next |-- |  ----->| next |-->| next |     | next |-----  | -->| next |-->| next |
    //  ... --------   |  |     --------   -------- ... --------    |  |    --------   -------- ...
    //      | prev |<---  |  ---| prev |<--| prev |     | prev |<-- |  -----| prev |<--| prev |
    //      --------      |  |  --------   --------     --------  | |       --------   --------
    //                    |  |                                    | |
    //                    |  ------                               | |
    //                    ------- |  ------------------------------ |
    //                          | |  |                              |
    //                          | |  |  -----------------------------
    //                          | |  |  |
    //                          | |  |  |  position
    //                          | |  |  |     ↓
    //      --------   -------- | |  |  |  --------   --------   --------   --------
    //      | next |-->| next |-- |  |  -->| next |-->| next |-->| next |-->| next |
    //  ... --------   --------   |  |     --------   --------   --------   -------- ...
    //      | prev |<--| prev |<---  ------| prev |<--| prev |<--| prev |<--| prev |
    //      --------   --------            --------   --------   --------   --------
    ////////////////////////////////////////////////////////////////////////////////
      void transfer(iterator position, iterator first, iterator last)
      {
        if (position != last)
        {
          (*(link_type((*last.node).prev))).next = position.node;
          (*(link_type((*first.node).prev))).next = last.node;
          (*(link_type((*position.node).prev))).next = first.node;
          link_type tmp = link_type((*position.node).prev);
          (*position.node).prev = (*last.node).prev;
          (*last.node).prev = (*first.node).prev;
          (*first.node).prev = tmp;
        }
      }
    
    public:
      // 将链表x移动到position之前
      void splice(iterator position, list& x)
      {
        if (!x.empty())
          transfer(position, x.begin(), x.end());
      }
    
      // 将链表中i指向的内容移动到position之前
      void splice(iterator position, list&, iterator i)
      {
        iterator j = i;
        ++j;
        if (position == i || position == j) return;
        transfer(position, i, j);
      }
    
      // 将[first, last}元素移动到position之前
      void splice(iterator position, list&, iterator first, iterator last)
      {
        if (first != last)
          transfer(position, first, last);
      }
    
      void remove(const T& value);
      void unique();
      void merge(list& x);
      void reverse();
      void sort();
    
    #ifdef __STL_MEMBER_TEMPLATES
      template <class Predicate> void remove_if(Predicate);
      template <class BinaryPredicate> void unique(BinaryPredicate);
      template <class StrictWeakOrdering> void merge(list&, StrictWeakOrdering);
      template <class StrictWeakOrdering> void sort(StrictWeakOrdering);
    #endif /* __STL_MEMBER_TEMPLATES */
    
      friend bool operator== __STL_NULL_TMPL_ARGS (const list& x, const list& y);
    };
    
    // 判断两个链表是否相等
    template <class T, class Alloc>
    inline bool operator==(const list<T,Alloc>& x, const list<T,Alloc>& y)
    {
      typedef typename list<T,Alloc>::link_type link_type;
      link_type e1 = x.node;
      link_type e2 = y.node;
      link_type n1 = (link_type) e1->next;
      link_type n2 = (link_type) e2->next;
      for ( ; n1 != e1 && n2 != e2 ;
              n1 = (link_type) n1->next, n2 = (link_type) n2->next)
        if (n1->data != n2->data)
          return false;
      return n1 == e1 && n2 == e2;
    }
    
    // 链表比较大小使用的是字典顺序
    template <class T, class Alloc>
    inline bool operator<(const list<T, Alloc>& x, const list<T, Alloc>& y)
    {
      return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());
    }
    
    // 如果编译器支持模板函数特化优先级
    // 那么将全局的swap实现为使用list私有的swap以提高效率
    #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
    
    template <class T, class Alloc>
    inline void swap(list<T, Alloc>& x, list<T, Alloc>& y)
    {
      x.swap(y);
    }
    
    #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
    
    // 将[first, last)区间插入到position之前
    #ifdef __STL_MEMBER_TEMPLATES
    
    template <class T, class Alloc> template <class InputIterator>
    void list<T, Alloc>::insert(iterator position,
                                InputIterator first, InputIterator last)
    {
      for ( ; first != last; ++first)
        insert(position, *first);
    }
    
    #else /* __STL_MEMBER_TEMPLATES */
    
    template <class T, class Alloc>
    void list<T, Alloc>::insert(iterator position, const T* first, const T* last) {
      for ( ; first != last; ++first)
        insert(position, *first);
    }
    
    template <class T, class Alloc>
    void list<T, Alloc>::insert(iterator position,
                                const_iterator first, const_iterator last) {
      for ( ; first != last; ++first)
        insert(position, *first);
    }
    
    #endif /* __STL_MEMBER_TEMPLATES */
    
    // 在position前插入n个值为x的元素
    template <class T, class Alloc>
    void list<T, Alloc>::insert(iterator position, size_type n, const T& x)
    {
      for ( ; n > 0; --n)
        insert(position, x);
    }
    
    // 擦除[first, last)间的结点
    template <class T, class Alloc>
    list<T,Alloc>::iterator list<T, Alloc>::erase(iterator first, iterator last)
    {
      while (first != last) erase(first++);
      return last;
    }
    
    // 重新设置容量大小
    // 如果当前容量小于新容量, 则新增加值为x的元素, 使容量增加至新指定大小
    // 如果当前容量大于新容量, 则析构出来的元素
    template <class T, class Alloc>
    void list<T, Alloc>::resize(size_type new_size, const T& x)
    {
      iterator i = begin();
      size_type len = 0;
      for ( ; i != end() && len < new_size; ++i, ++len)
        ;
      if (len == new_size)
        erase(i, end());
      else                          // i == end()
        insert(end(), new_size - len, x);
    }
    
    // 销毁所有结点, 将链表置空
    template <class T, class Alloc>
    void list<T, Alloc>::clear()
    {
      link_type cur = (link_type) node->next;
      while (cur != node) {
        link_type tmp = cur;
        cur = (link_type) cur->next;
        destroy_node(tmp);
      }
      node->next = node;
      node->prev = node;
    }
    
    // 链表赋值操作
    // 如果当前容器元素少于x容器, 则析构多余元素,
    // 否则将调用insert插入x中剩余的元素
    template <class T, class Alloc>
    list<T, Alloc>& list<T, Alloc>::operator=(const list<T, Alloc>& x)
    {
      if (this != &x) {
        iterator first1 = begin();
        iterator last1 = end();
        const_iterator first2 = x.begin();
        const_iterator last2 = x.end();
        while (first1 != last1 && first2 != last2) *first1++ = *first2++;
        if (first2 == last2)
          erase(first1, last1);
        else
          insert(last1, first2, last2);
      }
      return *this;
    }
    
    // 移除特定值的所有结点
    // 时间复杂度O(n)
    template <class T, class Alloc>
    void list<T, Alloc>::remove(const T& value)
    {
      iterator first = begin();
      iterator last = end();
      while (first != last) {
        iterator next = first;
        ++next;
        if (*first == value) erase(first);
        first = next;
      }
    }
    
    // 移除容器内所有的相邻的重复结点
    // 时间复杂度O(n)
    // 用户自定义数据类型需要提供operator ==()重载
    template <class T, class Alloc>
    void list<T, Alloc>::unique()
    {
      iterator first = begin();
      iterator last = end();
      if (first == last) return;
      iterator next = first;
      while (++next != last) {
        if (*first == *next)
          erase(next);
        else
          first = next;
        next = first;
      }
    }
    
    // 假设当前容器和x都已序, 保证两容器合并后仍然有序
    template <class T, class Alloc>
    void list<T, Alloc>::merge(list<T, Alloc>& x)
    {
      iterator first1 = begin();
      iterator last1 = end();
      iterator first2 = x.begin();
      iterator last2 = x.end();
      while (first1 != last1 && first2 != last2)
        if (*first2 < *first1) {
          iterator next = first2;
          transfer(first1, first2, ++next);
          first2 = next;
        }
        else
          ++first1;
      if (first2 != last2) transfer(last1, first2, last2);
    }
    
    // 将链表倒置
    // 其算法核心是历遍链表, 每次取出一个结点, 并插入到链表起始点
    // 历遍完成后链表满足倒置
    template <class T, class Alloc>
    void list<T, Alloc>::reverse()
    {
      if (node->next == node || link_type(node->next)->next == node) return;
      iterator first = begin();
      ++first;
      while (first != end()) {
        iterator old = first;
        ++first;
        transfer(begin(), old, first);
      }
    }
    
    // 按照升序排序
    template <class T, class Alloc>
    void list<T, Alloc>::sort()
    {
      if (node->next == node || link_type(node->next)->next == node) return;
      list<T, Alloc> carry;
      list<T, Alloc> counter[64];
      int fill = 0;
      while (!empty()) {
        carry.splice(carry.begin(), *this, begin());
        int i = 0;
        while(i < fill && !counter[i].empty()) {
          counter[i].merge(carry);
          carry.swap(counter[i++]);
        }
        carry.swap(counter[i]);
        if (i == fill) ++fill;
      }
    
      for (int i = 1; i < fill; ++i) counter[i].merge(counter[i-1]);
      swap(counter[fill-1]);
    }
    
    #ifdef __STL_MEMBER_TEMPLATES
    
    // 给定一个仿函数, 如果仿函数值为真则进行相应元素的移除
    template <class T, class Alloc> template <class Predicate>
    void list<T, Alloc>::remove_if(Predicate pred)
    {
      iterator first = begin();
      iterator last = end();
      while (first != last) {
        iterator next = first;
        ++next;
        if (pred(*first)) erase(first);
        first = next;
      }
    }
    
    // 根据仿函数, 决定如何移除相邻的重复结点
    template <class T, class Alloc> template <class BinaryPredicate>
    void list<T, Alloc>::unique(BinaryPredicate binary_pred)
    {
      iterator first = begin();
      iterator last = end();
      if (first == last) return;
      iterator next = first;
      while (++next != last) {
        if (binary_pred(*first, *next))
          erase(next);
        else
          first = next;
        next = first;
      }
    }
    
    // 假设当前容器和x均已序, 将x合并到当前容器中, 并保证在comp仿函数
    // 判定下仍然有序
    template <class T, class Alloc> template <class StrictWeakOrdering>
    void list<T, Alloc>::merge(list<T, Alloc>& x, StrictWeakOrdering comp)
    {
      iterator first1 = begin();
      iterator last1 = end();
      iterator first2 = x.begin();
      iterator last2 = x.end();
      while (first1 != last1 && first2 != last2)
        if (comp(*first2, *first1)) {
          iterator next = first2;
          transfer(first1, first2, ++next);
          first2 = next;
        }
        else
          ++first1;
      if (first2 != last2) transfer(last1, first2, last2);
    }
    
    // 根据仿函数comp据定如何排序
    template <class T, class Alloc> template <class StrictWeakOrdering>
    void list<T, Alloc>::sort(StrictWeakOrdering comp)
    {
      if (node->next == node || link_type(node->next)->next == node) return;
      list<T, Alloc> carry;
      list<T, Alloc> counter[64];
      int fill = 0;
      while (!empty()) {
        carry.splice(carry.begin(), *this, begin());
        int i = 0;
        while(i < fill && !counter[i].empty()) {
          counter[i].merge(carry, comp);
          carry.swap(counter[i++]);
        }
        carry.swap(counter[i]);
        if (i == fill) ++fill;
      }
    
      for (int i = 1; i < fill; ++i) counter[i].merge(counter[i-1], comp);
      swap(counter[fill-1]);
    }
    
    #endif /* __STL_MEMBER_TEMPLATES */
    
    #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
    #pragma reset woff 1174
    #endif
    
    __STL_END_NAMESPACE
    
    #endif /* __SGI_STL_INTERNAL_LIST_H */
    
    // Local Variables:
    // mode:C++
    // End:
  • 相关阅读:
    框架-前端框架:layui
    开发模式-敏捷开发:什么是敏捷开发
    公司-便利蜂:便利蜂
    人物-IT-周鸿祎:百科
    公司-人人网:人人网
    未来-YLB-二手市场:二手市场
    未来-YLB-跳蚤市场:跳蚤市场(flea market)
    公司-浪潮:浪潮/inspur
    禁止CloudStack删除Xenserver原有虚拟机
    2.6.33中关于at91sam9260的i2c controller驱动的问题
  • 原文地址:https://www.cnblogs.com/zendu/p/4987830.html
Copyright © 2020-2023  润新知