• stl_algobase.h


    stl_algobase.h
    // Filename:    stl_algobase.h
    
    // Comment By:  凝霜
    // E-mail:      mdl2009@vip.qq.com
    // Blog:        http://blog.csdn.net/mdl13412
    
    // 这个文件中定义的都是一些最常用的算法, 我仅仅给出一个思路,
    // 不进行详尽讲解, 具体算法请参考算法书籍, 推荐《算法导论》
    // 另外, 对于基础薄弱的, 推荐《大话数据结构》, 此书我读了一下
    // 试读章节, 适合初学者学习
    
    /*
     *
     * Copyright (c) 1994
     * Hewlett-Packard Company
     *
     * Permission to use, copy, modify, distribute and sell this software
     * and its documentation for any purpose is hereby granted without fee,
     * provided that the above copyright notice appear in all copies and
     * that both that copyright notice and this permission notice appear
     * in supporting documentation.  Hewlett-Packard Company makes no
     * representations about the suitability of this software for any
     * purpose.  It is provided "as is" without express or implied warranty.
     *
     *
     * Copyright (c) 1996
     * Silicon Graphics Computer Systems, Inc.
     *
     * Permission to use, copy, modify, distribute and sell this software
     * and its documentation for any purpose is hereby granted without fee,
     * provided that the above copyright notice appear in all copies and
     * that both that copyright notice and this permission notice appear
     * in supporting documentation.  Silicon Graphics makes no
     * representations about the suitability of this software for any
     * purpose.  It is provided "as is" without express or implied warranty.
     */
    
    /* NOTE: This is an internal header file, included by other STL headers.
     *   You should not attempt to use it directly.
     */
    
    #ifndef __SGI_STL_INTERNAL_ALGOBASE_H
    #define __SGI_STL_INTERNAL_ALGOBASE_H
    
    #ifndef __STL_CONFIG_H
    #include <stl_config.h>
    #endif
    #ifndef __SGI_STL_INTERNAL_RELOPS
    #include <stl_relops.h>
    #endif
    #ifndef __SGI_STL_INTERNAL_PAIR_H
    #include <stl_pair.h>
    #endif
    #ifndef __TYPE_TRAITS_H_
    #include <type_traits.h>
    #endif
    
    #include <string.h>
    #include <limits.h>
    #include <stdlib.h>
    #include <stddef.h>
    #include <new.h>
    #include <iostream.h>
    
    #ifndef __SGI_STL_INTERNAL_ITERATOR_H
    #include <stl_iterator.h>
    #endif
    
    __STL_BEGIN_NAMESPACE
    
    // 第三个参数为什么为指针参见<stl_iterator.h>
    template <class ForwardIterator1, class ForwardIterator2, class T>
    inline void __iter_swap(ForwardIterator1 a, ForwardIterator2 b, T*)
    {
      // 这里交换的其实是内部对象
      T tmp = *a;
      *a = *b;
      *b = tmp;
    }
    
    template <class ForwardIterator1, class ForwardIterator2>
    inline void iter_swap(ForwardIterator1 a, ForwardIterator2 b)
    {
      // 型别以第一个为准
      __iter_swap(a, b, value_type(a));
    }
    
    // 进行交换操作, 使用的是operator =()
    template <class T>
    inline void swap(T& a, T& b)
    {
      T tmp = a;
      a = b;
      b = tmp;
    }
    
    #ifndef __BORLANDC__
    
    #undef min
    #undef max
    
    // max和min非常简单了, 由于返回的是引用, 因此可以嵌套使用
    template <class T>
    inline const T& min(const T& a, const T& b)
    {
      return b < a ? b : a;
    }
    
    template <class T>
    inline const T& max(const T& a, const T& b)
    {
      return  a < b ? b : a;
    }
    
    #endif /* __BORLANDC__ */
    
    template <class T, class Compare>
    inline const T& min(const T& a, const T& b, Compare comp)
    {
      return comp(b, a) ? b : a;
    }
    
    template <class T, class Compare>
    inline const T& max(const T& a, const T& b, Compare comp)
    {
      return comp(a, b) ? b : a;
    }
    
    // 这是不支持随机访问的情况
    template <class InputIterator, class OutputIterator>
    inline OutputIterator __copy(InputIterator first, InputIterator last,
                                 OutputIterator result, input_iterator_tag)
    {
      // first != last导致要进行迭代器的比较, 效率低
      for ( ; first != last; ++result, ++first)
        *result = *first;
      return result;
    }
    
    template <class RandomAccessIterator, class OutputIterator, class Distance>
    inline OutputIterator
    __copy_d(RandomAccessIterator first, RandomAccessIterator last,
             OutputIterator result, Distance*)
    {
      // 不进行迭代器间的比较, 直接指定循环次数, 高效
      for (Distance n = last - first; n > 0; --n, ++result, ++first)
        *result = *first;
      return result;
    }
    
    // 这是支持随机访问的情况
    template <class RandomAccessIterator, class OutputIterator>
    inline OutputIterator
    __copy(RandomAccessIterator first, RandomAccessIterator last,
           OutputIterator result, random_access_iterator_tag)
    {
      return __copy_d(first, last, result, distance_type(first));
    }
    
    template <class InputIterator, class OutputIterator>
    struct __copy_dispatch
    {
      // 这里是一个仿函数. 再次派发
      OutputIterator operator()(InputIterator first, InputIterator last,
                                OutputIterator result) {
        return __copy(first, last, result, iterator_category(first));
      }
    };
    
    // 提供兼容
    #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
    
    // 可以直接移动, 不需要额外操作
    template <class T>
    inline T* __copy_t(const T* first, const T* last, T* result, __true_type)
    {
      memmove(result, first, sizeof(T) * (last - first));
      return result + (last - first);
    }
    
    // 需要进行一些处理, 保证对象复制的正确性
    template <class T>
    inline T* __copy_t(const T* first, const T* last, T* result, __false_type)
    {
      return __copy_d(first, last, result, (ptrdiff_t*) 0);
    }
    
    // 对指针提供特化
    template <class T>
    struct __copy_dispatch<T*, T*>
    {
      T* operator()(T* first, T* last, T* result)
      {
        // 判断其内部是否具有trivial_assignment_operator, 以进行派发
        typedef typename __type_traits<T>::has_trivial_assignment_operator t;
        return __copy_t(first, last, result, t());
      }
    };
    
    template <class T>
    struct __copy_dispatch<const T*, T*>
    {
      T* operator()(const T* first, const T* last, T* result) {
        typedef typename __type_traits<T>::has_trivial_assignment_operator t;
        return __copy_t(first, last, result, t());
      }
    };
    
    #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
    
    // 将[first, last)拷贝到result处
    template <class InputIterator, class OutputIterator>
    inline OutputIterator copy(InputIterator first, InputIterator last,
                               OutputIterator result)
    {
      // 此处进行函数派发操作
      return __copy_dispatch<InputIterator,OutputIterator>()(first, last, result);
    }
    
    // 针对char字符串的特化, 效率至上, C++的设计理念
    inline char* copy(const char* first, const char* last, char* result)
    {
      memmove(result, first, last - first);
      return result + (last - first);
    }
    
    // 针对wchar_t字符串的特化, 效率至上, C++的设计理念
    inline wchar_t* copy(const wchar_t* first, const wchar_t* last,
                         wchar_t* result) {
      memmove(result, first, sizeof(wchar_t) * (last - first));
      return result + (last - first);
    }
    
    
    template <class BidirectionalIterator1, class BidirectionalIterator2>
    inline BidirectionalIterator2 __copy_backward(BidirectionalIterator1 first,
                                                  BidirectionalIterator1 last,
                                                  BidirectionalIterator2 result)
    {
      while (first != last) *--result = *--last;
      return result;
    }
    
    
    template <class BidirectionalIterator1, class BidirectionalIterator2>
    struct __copy_backward_dispatch
    {
      BidirectionalIterator2 operator()(BidirectionalIterator1 first,
                                        BidirectionalIterator1 last,
                                        BidirectionalIterator2 result)
      {
        return __copy_backward(first, last, result);
      }
    };
    
    #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
    
    template <class T>
    inline T* __copy_backward_t(const T* first, const T* last, T* result,
                                __true_type)
    {
      const ptrdiff_t N = last - first;
      memmove(result - N, first, sizeof(T) * N);
      return result - N;
    }
    
    template <class T>
    inline T* __copy_backward_t(const T* first, const T* last, T* result,
                                __false_type)
    {
      return __copy_backward(first, last, result);
    }
    
    template <class T>
    struct __copy_backward_dispatch<T*, T*>
    {
      T* operator()(T* first, T* last, T* result)
      {
        typedef typename __type_traits<T>::has_trivial_assignment_operator t;
        return __copy_backward_t(first, last, result, t());
      }
    };
    
    template <class T>
    struct __copy_backward_dispatch<const T*, T*>
    {
      T* operator()(const T* first, const T* last, T* result)
      {
        typedef typename __type_traits<T>::has_trivial_assignment_operator t;
        return __copy_backward_t(first, last, result, t());
      }
    };
    
    #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
    
    // 将[first, last)的元素反向拷贝到(..., last)处, 其机制和copy非常接近, 不做说明
    template <class BidirectionalIterator1, class BidirectionalIterator2>
    inline BidirectionalIterator2 copy_backward(BidirectionalIterator1 first,
                                                BidirectionalIterator1 last,
                                                BidirectionalIterator2 result)
    {
      return __copy_backward_dispatch<BidirectionalIterator1,
                                      BidirectionalIterator2>()(first, last,
                                                                result);
    }
    
    
    template <class InputIterator, class Size, class OutputIterator>
    pair<InputIterator, OutputIterator> __copy_n(InputIterator first, Size count,
                                                 OutputIterator result,
                                                 input_iterator_tag)
    {
      for ( ; count > 0; --count, ++first, ++result)
        *result = *first;
      return pair<InputIterator, OutputIterator>(first, result);
    }
    
    template <class RandomAccessIterator, class Size, class OutputIterator>
    inline pair<RandomAccessIterator, OutputIterator>
    __copy_n(RandomAccessIterator first, Size count,
             OutputIterator result,
             random_access_iterator_tag)
    {
      // 使用copy()以选择最高效的拷贝算法
      RandomAccessIterator last = first + count;
      return pair<RandomAccessIterator, OutputIterator>(last,
                                                        copy(first, last, result));
    }
    
    // 从first拷贝n个值到result处
    template <class InputIterator, class Size, class OutputIterator>
    inline pair<InputIterator, OutputIterator>
    copy_n(InputIterator first, Size count,
           OutputIterator result)
    {
      // 进行函数派发, 选咋高效版本
      return __copy_n(first, count, result, iterator_category(first));
    }
    
    // 使用value填充[first, last)区间
    template <class ForwardIterator, class T>
    void fill(ForwardIterator first, ForwardIterator last, const T& value)
    {
      for ( ; first != last; ++first)
        *first = value;     // 调用的是operator =(), 这个要特别注意
    }
    
    // 用value填充[first, first + n)的区间
    // 为了防止越界, 可以使用下面实例的技巧
    // vector<int> vec();
    // for (int i = 0; i < 10; ++i)
    //      vec.push_back(i);
    // fill_n(inserter(iv, iv.begin()), 100, 10);   // 这就可以使容器动态扩展
    template <class OutputIterator, class Size, class T>
    OutputIterator fill_n(OutputIterator first, Size n, const T& value)
    {
      for ( ; n > 0; --n, ++first)
        *first = value;
      return first;
    }
    
    // 找到两个序列第一个失配的地方, 结果以pair返回
    template <class InputIterator1, class InputIterator2>
    pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1,
                              InputIterator1 last1,
                              InputIterator2 first2)
    {
      // 遍历区间, 寻找失配点
      while (first1 != last1 && *first1 == *first2) {
        ++first1;
        ++first2;
      }
      return pair<InputIterator1, InputIterator2>(first1, first2);
    }
    
    // 提供用户自定义的二元判别式, 其余同上
    template <class InputIterator1, class InputIterator2, class BinaryPredicate>
    pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1,
                              InputIterator1 last1,
                              InputIterator2 first2,
                              BinaryPredicate binary_pred)
    {
      while (first1 != last1 && binary_pred(*first1, *first2)) {
        ++first1;
        ++first2;
      }
      return pair<InputIterator1, InputIterator2>(first1, first2);
    }
    
    // 如果序列在[first, last)内相等, 则返回true, 如果第二个序列有多余的元素,
    // 则不进行比较, 直接忽略. 如果第二个序列元素不足, 会导致未定义行为
    template <class InputIterator1, class InputIterator2>
    inline bool equal(InputIterator1 first1, InputIterator1 last1,
              InputIterator2 first2)
    {
      for ( ; first1 != last1; ++first1, ++first2)
        if (*first1 != *first2)     // 只要有一个不相等就判定为false
          return false;
      return true;
    }
    
    // 进行比较的操作改为用户指定的二元判别式, 其余同上
    template <class InputIterator1, class InputIterator2, class BinaryPredicate>
    inline bool equal(InputIterator1 first1, InputIterator1 last1,
              InputIterator2 first2, BinaryPredicate binary_pred)
    {
      for ( ; first1 != last1; ++first1, ++first2)
        if (!binary_pred(*first1, *first2))
          return false;
      return true;
    }
    
    // 字典序比较, 非常类似字符串的比较
    // 具体比较方式参见STL文档, 另外strcmp()也可以参考
    template <class InputIterator1, class InputIterator2>
    bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
                     InputIterator2 first2, InputIterator2 last2)
    {
      for ( ; first1 != last1 && first2 != last2; ++first1, ++first2) {
        if (*first1 < *first2)
          return true;
        if (*first2 < *first1)
          return false;
      }
      return first1 == last1 && first2 != last2;
    }
    
    // 二元判别式自己指定, 其余同上
    template <class InputIterator1, class InputIterator2, class Compare>
    bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
                     InputIterator2 first2, InputIterator2 last2,
                     Compare comp) {
      for ( ; first1 != last1 && first2 != last2; ++first1, ++first2)
      {
        if (comp(*first1, *first2))
          return true;
        if (comp(*first2, *first1))
          return false;
      }
      return first1 == last1 && first2 != last2;
    }
    
    // 针对字符串的特化, 效率至上
    inline bool
    lexicographical_compare(const unsigned char* first1,
                            const unsigned char* last1,
                            const unsigned char* first2,
                            const unsigned char* last2)
    {
      const size_t len1 = last1 - first1;
      const size_t len2 = last2 - first2;
      const int result = memcmp(first1, first2, min(len1, len2));
      return result != 0 ? result < 0 : len1 < len2;
    }
    
    // 针对字符串的特化, 效率至上
    inline bool lexicographical_compare(const char* first1, const char* last1,
                                        const char* first2, const char* last2)
    {
    #if CHAR_MAX == SCHAR_MAX
      return lexicographical_compare((const signed char*) first1,
                                     (const signed char*) last1,
                                     (const signed char*) first2,
                                     (const signed char*) last2);
    #else
      return lexicographical_compare((const unsigned char*) first1,
                                     (const unsigned char*) last1,
                                     (const unsigned char*) first2,
                                     (const unsigned char*) last2);
    #endif
    }
    
    // 一句话概括, 这个是strcmp()的泛化版本
    template <class InputIterator1, class InputIterator2>
    int lexicographical_compare_3way(InputIterator1 first1, InputIterator1 last1,
                                     InputIterator2 first2, InputIterator2 last2)
    {
      while (first1 != last1 && first2 != last2) {
        if (*first1 < *first2) return -1;
        if (*first2 < *first1) return 1;
        ++first1; ++first2;
      }
      if (first2 == last2) {
        return !(first1 == last1);
      } else {
        return -1;
      }
    }
    
    // 特换版本, 效率决定一切
    inline int
    lexicographical_compare_3way(const unsigned char* first1,
                                 const unsigned char* last1,
                                 const unsigned char* first2,
                                 const unsigned char* last2)
    {
      const ptrdiff_t len1 = last1 - first1;
      const ptrdiff_t len2 = last2 - first2;
      const int result = memcmp(first1, first2, min(len1, len2));
      return result != 0 ? result : (len1 == len2 ? 0 : (len1 < len2 ? -1 : 1));
    }
    
    inline int lexicographical_compare_3way(const char* first1, const char* last1,
                                            const char* first2, const char* last2)
    {
    #if CHAR_MAX == SCHAR_MAX
      return lexicographical_compare_3way(
                    (const signed char*) first1,
                                    (const signed char*) last1,
                                    (const signed char*) first2,
                                    (const signed char*) last2);
    #else
      return lexicographical_compare_3way((const unsigned char*) first1,
                                          (const unsigned char*) last1,
                                          (const unsigned char*) first2,
                                          (const unsigned char*) last2);
    #endif
    }
    
    __STL_END_NAMESPACE
    
    #endif /* __SGI_STL_INTERNAL_ALGOBASE_H */
    
    // Local Variables:
    // mode:C++
    // End:
  • 相关阅读:
    Mysql mysql lost connection to server during query 问题解决方法
    【转】程序员必须知道的几个Git代码托管平台
    FIFO存储器
    JUCE_FIFO实现分析
    【转】HashMap实现原理分析
    【转】int && 非常量右值
    【API】注册表编程基础-RegCreateKeyEx、RegSetValueEx
    【API】文件操作编程基础-CreateFile、WriteFile、SetFilePointer
    【逆向知识】裸函数(Naked函数)
    【逆向知识】堆栈图-汇编中的函数
  • 原文地址:https://www.cnblogs.com/zendu/p/4981590.html
Copyright © 2020-2023  润新知