• 基于tensorflow2.0和cifar100的VGG13网络训练


    VGG是2014年ILSVRC图像分类竞赛的第二名,相比当年的冠军GoogleNet在可扩展性方面更胜一筹,此外,它也是从图像中提取特征的CNN首选算法,VGG的各种网络模型结构如下:

    今天代码的原型是基于VGG13,也就是上图的B类,可以看到它的参数量是很可观的。

    因为设备和时间问题,网络并没有训练完成,但是已经看到参数变化的效果。(毕竟VGG团队在最初训练时使用4块显卡并行计算还训练了2-3周,虽然当今显卡性能已经有了明显的提升,但是只能CPU训练的小可怜实在不敢继续下去了)

    直接上代码吧

    import tensorflow as tf
    from tensorflow import keras
    import os
    
    os.environ['TF_CPP_MIN_LOG'] = '2'
    
    conv_layers = [
        # part 1
        keras.layers.Conv2D(64,kernel_size=[3,3],padding='same',activation=tf.nn.relu),
        keras.layers.Conv2D(64,kernel_size=[3,3],padding='same',activation=tf.nn.relu),
        keras.layers.MaxPool2D(pool_size=[2,2],strides=2,padding='same'),
    
        # part 2
        keras.layers.Conv2D(128,kernel_size=[3,3],padding='same',activation=tf.nn.relu),
        keras.layers.Conv2D(128,kernel_size=[3,3],padding='same',activation=tf.nn.relu),
        keras.layers.MaxPool2D(pool_size=[2,2],strides=2,padding='same'),
    
        # part 3
        keras.layers.Conv2D(256,kernel_size=[3,3],padding='same',activation=tf.nn.relu),
        keras.layers.Conv2D(256,kernel_size=[3,3],padding='same',activation=tf.nn.relu),
        keras.layers.MaxPool2D(pool_size=[2,2],strides=2,padding='same'),
    
        # part 4
        keras.layers.Conv2D(512,kernel_size=[3,3],padding='same',activation=tf.nn.relu),
        keras.layers.Conv2D(512,kernel_size=[3,3],padding='same',activation=tf.nn.relu),
        keras.layers.MaxPool2D(pool_size=[2,2],strides=2,padding='same'),
    
        # part 5
        keras.layers.Conv2D(512,kernel_size=[3,3],padding='same',activation=tf.nn.relu),
        keras.layers.Conv2D(512,kernel_size=[3,3],padding='same',activation=tf.nn.relu),
        keras.layers.MaxPool2D(pool_size=[2,2],strides=2,padding='same'),
    ]
    
    fc_layers =[
        keras.layers.Dense(4096,activation = tf.nn.relu),
        keras.layers.Dense(4096,activation = tf.nn.relu),
        keras.layers.Dense(10)
    ]
    
    
    def preprocess(x,y):
        x = tf.cast(x,dtype=tf.float32)/255.
        y = tf.cast(y,dtype=tf.int32)
        return x,y
    
    (x,y),(x_test,y_test) = keras.datasets.cifar100.load_data()
    y = tf.squeeze(y,axis=1)
    y_test = tf.squeeze(y_test,axis=1)
    print(x.shape,y.shape,x_test.shape,y_test.shape)
    
    train_db = tf.data.Dataset.from_tensor_slices((x,y))
    train_db = train_db.shuffle(1000).map(preprocess).batch(64)
    
    test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test))
    test_db = train_db.map(preprocess).batch(64)
    
    def main():
        conv_net = keras.Sequential(conv_layers)
        conv_net.build(input_shape=[None,32,32,3])
        fc_net = keras.Sequential(fc_layers)
        fc_net.build(input_shape=[None,512])
        optimizer = keras.optimizers.Adam(lr=1e-4)
    
        for epoch in range(50):
            for step,(x,y) in enumerate(train_db):
                with tf.GradientTape() as tape:
                    out = conv_net(x)
                    out = tf.reshape(out,[-1,512])
                    logits = fc_net(out)
                    y_onehot = tf.one_hot(y,depth=10)
                    loss = tf.losses.categorical_crossentropy(y_onehot,logits,from_logits=True)
                    loss = tf.reduce_mean(loss)
    
                gradient = tape.gradient(loss,conv_net.trainable_variables + fc_net.trainable)
                optimizer.apply_gradients(zip(gradient,conv_net.trainable_variables + fc_net.trainable))
    
                if step % 100 == 0:
                    print(epoch,step,'loss:',float(loss))
    
            total_num = 0
            total_correct = 0
            for x,y in test_db:
                out = conv_net(x)
                out = tf.reshape(out,[-1,512])
                logits = fc_net(out)
                prob = tf.nn.softmax(logits,axis=1)
                pred = tf.argmax(prob,axis=1)
                pred = tf.cast(pred,dtype=tf.int32)
    
                correct = tf.cast(tf.equal(pred,y),dtype=tf.int32)
                correct = tf.reduce_sum(correct)
    
                total_num += x.shape[0]
                total_correct += correct
                acc = total_correct/total_num
    
                print("acc:",acc)
    
    
    if __name__ == '__main__':
        main()

    通过这样一个网络模型的搭建,确实又加深了我对神经网络的认识以及tensorflow使用的熟练度,果然上机才是最佳学习方式!

  • 相关阅读:
    少走弯路 就要这样做数据分析
    少走弯路 就要这样做数据分析
    数据挖掘与CRM
    大数据精准营销的关键“三部曲”及核心“用户画像”
    大数据精准营销的关键“三部曲”及核心“用户画像”
    常见机器学习算法比较
    常见机器学习算法比较
    解决git clone时报错:The requested URL returned error: 401 Unauthorized while accessing
    机器学习技法之Aggregation方法总结:Blending、Learning(Bagging、AdaBoost、Decision Tree)及其aggregation of aggregation
    Java 实现选择排序
  • 原文地址:https://www.cnblogs.com/zdm-code/p/12293084.html
Copyright © 2020-2023  润新知