• tensorflow张量排序


    本篇记录一下TensorFlow中张量的排序方法

    tf.sort和tf.argsort

    # 声明tensor a是由1到5打乱顺序组成的
    a = tf.random.shuffle(tf.range(5))
    # 打印排序后的tensor
    print(tf.sort(a,direction='DESCENDING').numpy())
    # 打印从大到小排序后,数字对应原来的索引
    print(tf.argsort(a,direction='DESCENDING').numpy())
    index = tf.argsort(a,direction='DESCENDING')
    # 按照索引序列取值
    print(tf.gather(a,index))
    
    # 返回最大的两个值信息
    res = tf.math.top_k(a,2)
    # indices返回索引
    print(res.indices)
    # values返回值
    print(res.values)

    计算准确率实例:

    # 定义模型输出预测概率
    prob = tf.constant([[0.1,0.2,0.7],[0.2,0.7,0.1]])
    # 定义y标签
    target = tf.constant([2,0])
    # 求top3的索引
    k_b = tf.math.top_k(prob,3).indices
    # 将矩阵进行转置,即把top-1,top-2,top-3分组
    print(tf.transpose(k_b,[1,0]))
    # 将y标签扩展成与top矩阵相同维度的tensor,方便比较
    target = tf.broadcast_to(target,[3,2])
    
    # 实现求准确率的方法
    def accuracy(output,target,topk=(1,)):
        maxk = max(topk)
        batch_size = target.shape[0]
    
        pred = tf.math.top_k(output,maxk).indices
        pred = tf.transpose(pred,perm=[1,0])
        target_ = tf.broadcast_to(target,pred.shape)
        correct = tf.equal(pred,target_)
    
        res = []
        for k in topk:
            correct_k = tf.cast(tf.reshape(correct[:k],[-1]),dtype=tf.float32)
            correct_k = tf.reduce_sum(correct_k)
            acc = float(correct_k/batch_size)
            res.append(acc)
        return res
    import  tensorflow as tf
    import  os
    
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    tf.random.set_seed(2467)
    
    def accuracy(output, target, topk=(1,)):
        maxk = max(topk)
        batch_size = target.shape[0]
    
        pred = tf.math.top_k(output, maxk).indices
        pred = tf.transpose(pred, perm=[1, 0])
        target_ = tf.broadcast_to(target, pred.shape)
        # [10, b]
        correct = tf.equal(pred, target_)
    
        res = []
        for k in topk:
            correct_k = tf.cast(tf.reshape(correct[:k], [-1]), dtype=tf.float32)
            correct_k = tf.reduce_sum(correct_k)
            acc = float(correct_k* (100.0 / batch_size) )
            res.append(acc)
    
        return res
    
    
    
    output = tf.random.normal([10, 6])
    output = tf.math.softmax(output, axis=1)
    target = tf.random.uniform([10], maxval=6, dtype=tf.int32)
    print('prob:', output.numpy())
    pred = tf.argmax(output, axis=1)
    print('pred:', pred.numpy())
    print('label:', target.numpy())
    
    acc = accuracy(output, target, topk=(1,2,3,4,5,6))
    print('top-1-6 acc:', acc)

  • 相关阅读:
    Flink--Table和DataStream和DataSet的集成
    flink-SQL
    Flink的容错
    Flink--基于mysql的sink和source
    Flink--sink到kafka
    Flink在流处理上常见的Source和sink操作
    【计算机网络】-传输层-传输服务的要素
    【计算机网络】-传输层-传输服务
    文件系统-文件的逻辑结构与存取方法
    文件系统-概念
  • 原文地址:https://www.cnblogs.com/zdm-code/p/12231585.html
Copyright © 2020-2023  润新知